Advertisement

Journal of Comparative Physiology A

, Volume 174, Issue 2, pp 239–247 | Cite as

The regulation of distance to dummy flowers during hovering flight in the hawk moth Macroglossum stellatarum

  • W. M. Farina
  • D. Varjú
  • Y. Zhou
Article

Abstract

  1. 1.

    While collecting nectar in hovering flight the European hawk moth Macroglossum stellatarum efficiently regulates its distance relative to flowers that are shaken by wind. This can be demonstrated in laboratory experiments by moving dummy flowers (blue cardboard disks) towards and away from the feeding animal (Fig. 1).

     
  2. 2.

    Distance regulation is predominantly mediated by visual cues. Mechanoreceptors on the proboscis appear to contribute little to the response.

     
  3. 3.

    Movements of dummy flowers can be simulated by expanding and contracting a pattern projected onto a screen. With this technique we investigated the dynamical properties of the servo mechanism underlying distance regulation. The system behaves as a bandpass filter with corner frequencies of 0.15 and 5 Hz (Figs.2,3).

     
  4. 4.

    When a high-speed ramp-like movement of the flower is simulated, there is an asymmetry in the response. During simulated approach the reaction is phasic-tonic with a pronounced overshoot at the beginning, during simulated retraction it remains tonic (Fig.5B,C).

     
  5. 5.

    During distance regulation the animals compensate for the speed of the edge of the projected pattern. Distance regulation improves substantially when the number of stimulated elementary movement detectors is increased through increasing the number of contour lines by projecting concentric rings instead of a homogeneous disk (Figs.7, 8).

     

Key words

Hawk moth Hovering flight Distance regulation Speed compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burkhardt D, Darnhofer-Demar B, Fischer K (1973) tZum binokularen Entfernungssehen der Insekten: Die Struktur des Sehraumes von Synsekten. J Comp Physiol 87:165–188Google Scholar
  2. Collett T (1978) Peering — a locust behaviour pattern for obtaining motion parallax information. J Exp Biol 76:237–241Google Scholar
  3. Collett T, Land MF (1975) Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J Comp Physiol 99:1–65Google Scholar
  4. Collett TS, Paterson CJ (1991) Relative motion parallax and target localisation in the locust, Schistocerca gregaria. J Comp Physiol A 169:615–621Google Scholar
  5. Egelhaaf M, Borst A (1993) Movement detection in arthopods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Reviews of oculomotor research, Vol 5. Elsevier, Amsterdam London New York Tokyo, pp 53–77Google Scholar
  6. Erikson ES (1980) Movement parallax and distance perception in the grasshopper (Phaulacridium vittatum Sjoestedt) J Exp Biol 86:337–341Google Scholar
  7. Farina WM, Josens RB (1993) The distance regulation to moving dummy flowers in the hawk moth Macroglossum stellatarum: Locomotor activity as a function of the profitability of the food source. In: Elsner N, Heisenberg M (eds) Gen — Gehirn — Verhalten. G. Thieme, Stuttgart New York, p 368Google Scholar
  8. Frantsevich LI, Pichka VE (1976) The size of the binocular zone of the field in insects. J Evol Biochem Physiol (USSR) 12:461–465Google Scholar
  9. Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524Google Scholar
  10. Knoll F (1922) Lichtsinn und Blumenbesuch des Falters Macroglossum stellatarum. Abh Zool Bot Ges Wien 12:123–378Google Scholar
  11. Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee's visual world with a third dimension. Nature 332:356–357Google Scholar
  12. Maldonado H, Rodriguez E (1972) Depth perception in the preying mantis. Physiol Behav 8:751–759Google Scholar
  13. Pfaff M (1991) Visuelle Orientierung anthophiler Insekten am Beispiel des Taubenschwanzes Macroglossum stellatarum. Dissertation Universität TübingenGoogle Scholar
  14. Pfaff M, Varjú D (1991) Mechanisms of visual distance perception in the hawk moth Macroglossum stellatarum. Zool Jb Physiol 95:315–321Google Scholar
  15. Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen (Folgerungen aus Experimenten am Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b:674–689Google Scholar
  16. Rossel S (1983) Binocular stereopsis in an insect. Nature 302:821–822Google Scholar
  17. Sobel EC (1990) The locust's use of motion parallax to measure distance. J Comp Physiol A 167:579–588Google Scholar
  18. Varjú D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster. (Anwendung der Systemtheorie auf Experimente am Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b:724–735Google Scholar
  19. Varjú D (1973) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Wirksamkeit und biologische Signifikanz des optomotorischen Regelkreises. Nova Acta Leopoldina, Neue Folge, Nummer 208, Band 37/2Google Scholar
  20. Varjú D (1987) The interaction between visual edge fixation and skototaxis in the mealworm beetle Tenebrio molitor. J Comp Physiol A 160:543–552Google Scholar
  21. Varjú D, Farina WM (1993) How the hawk moth Macroglossum stellatarum regulates the distance to moving dummy flowers. In: Elsner N, Heisenberg M (eds) Gen — Gehirn — Verhalten. G. Thieme Stuttgart New York, p 369Google Scholar
  22. Wehrhahn Ch, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38:179–186Google Scholar
  23. Zhou Y (1991) Wechselwirkung zwischen dem visuellen und dem taktilen System beim Verfolgen von Blütenattrappen: Verhalten und Morphologie der Proboszisrezeptoren beim Taubenschwanz Macroglossum stellatarum L. Dissertation Universität TübingenGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • W. M. Farina
    • 1
  • D. Varjú
    • 1
  • Y. Zhou
    • 1
  1. 1.Universität Tübingen, Lehrstuhl für BiokybernetikTübingenGermany

Personalised recommendations