Advertisement

Human Genetics

, Volume 85, Issue 6, pp 623–626 | Cite as

Prenatal diagnosis of familial amyloidotic polyneuropathy: evidence for an early expression of the associated transthyretin methionine 30

  • Maria Rosário Almeida
  • Isabel Longo Alves
  • Yoshiuki Sakaki
  • Pedro Pinho Costa
  • Maria João M. Saraiva
Original Investigations

Summary

Transthyretin methionine 30 (TTR Met 30), which is associated with familial amyloidotic polyneuropathy, originates in a single base substitution (A for G) in the second exon of the TTR gene. This autosomal dominant disease can be diagnosed by RFLP analysis of NsiI-digested DNA. The amplification of DNA by PCR improves the diagnosis method, making it suitable for prenatal diagnosis. Using PCR-amplified DNA, prenatal diagnosis of two at-risk fetuses was performed. Control Met 30 and normal DNA (either genomic or produced by site directed mutagenesis) were processed in parallel. The diagnosis was made by hybridization with allele-specific oligonucleotide probes, and later confirmed by screening of the mutant protein in the amniotic fluid and, when possible, in the sera from the newborns. TTR Met 30 was detected in the amniotic fluid of a positive fetus whose father was the carrier of the mutation. This indicates that the mutant protein is expressed very early in development.

Keywords

Site Directed Mutagenesis Amniotic Fluid Prenatal Diagnosis Mutant Protein RFLP Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson MD, Dwulet FE (1985) Identification of carriers of a variant plasma prealbumin (transthyretin) associated with familial amyloidotic polyneuropathy. J Clin Invest 75:71–75Google Scholar
  2. Costa PP, Figueira A, Bravo F (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA 75:4499–4503Google Scholar
  3. Furuya H, Nakazato M, Saraiva MJM, Costa PP, Sasaki H, Matsuo H, Goto I, Sakaki Y (1989) Tetramer formation of variant type human transthyretin (prealbumin) produced by Escherichia coli expression vector. Biochem Biophys Res Commun 163:851–859Google Scholar
  4. Gitlin D, Gitlin JD (1975) Fetal and neonatal development of human plasma proteins. In: Putnam FW (ed) The plasma proteins, vol II, 2nd edn. Academic Press, New York London, 264–371Google Scholar
  5. Jacobsson B (1989) Localization of transthyretin-mRNA and of immunoreactive transthyretin in the human fetus. Virchows Arch [A] 415:259–263Google Scholar
  6. Kan YW, Dozy AM (1978) Polymorphisms of DNA sequence adjacent to human β-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci USA 75:5631–5635Google Scholar
  7. Nakazato M, Kurihara T, Matsukura S, Kangawa K, Matsuo H, (1986) Diagnostic radioimmunoassay for familial amyloidotic polyneuropathy before clinical onset. J Clin Invest 77:1699–1703Google Scholar
  8. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354PubMedGoogle Scholar
  9. Saraiva MJM, Costa PP, Birken S, Goodman DS (1983) Presence of an abnormal transthyretin (prealbumin) in familial amyloidotic polyneuropathy, Portuguese type. Trans Assoc Am Physicians 96:261–270Google Scholar
  10. Saraiva MJM, Birken S, Costa PP, Goodman DS (1984) Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J Clin Invest 74:104–119Google Scholar
  11. Saraiva MJM, Costa PP, Goodman DS (1985a) Biochemical marker in familial amyloidotic polyneuropathy, Portuguese type. J Clin Invest 76:2171–2177Google Scholar
  12. Saraiva MJM, Melhus H, Rego K, Costa PP, Peterson PA, Goodman DS (1985b) Genetic studies on a human plasma transthyretin (prealbumin) variant associated with familial amyloidotic polyneuropathy. In: Peeters H (ed) Protides of the biological fluids, vol 33. Pergamon Press, Oxford, pp 127–130Google Scholar
  13. Saraiva MJM, Alves IL, Costa PP (1989) Simplified method for screening populations at risk for transthyretin Met 30-associated familial amyloidotic polyneuropathy. Clin Chem 35:1033–1035Google Scholar
  14. Sasaki H, Sakaki Y, Matsuo H, Goto I, Kuroiwa Y, Sahashi I, Takahashi A, Shinoda T, Isobe T, Takagi Y (1984) Diagnosis of familial amyloidotic polyneuropathy by recombinant DNA techniques. Biochem Biophys Res Commun 125:636–642Google Scholar
  15. Sasaki H, Yoshioka N, Takagi Y, Sakaki Y (1985) Structure of the chromosomal gene for human serum prealbumin. Gene 37:191–197Google Scholar
  16. Sutcliffe RG (1975) The nature and origin of the soluble protein in human amniotic fluid. Biol Rev 50:1–33Google Scholar
  17. Yoshioka K, Furuya H, Sasaki H, Saraiva MJM, Costa PP, Sakaki Y (1989) Haplotype analysis of familial amyloidotic polyneuropathy. Evidence for multiple origins of the Val→Met mutation most common to the disease. Hum Genet 82:9–13Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Maria Rosário Almeida
    • 1
    • 2
  • Isabel Longo Alves
    • 1
    • 2
  • Yoshiuki Sakaki
    • 3
  • Pedro Pinho Costa
    • 1
  • Maria João M. Saraiva
    • 1
    • 2
  1. 1.Centro de Estudos de Paramiloidose, Instituto Nacional de SaúdePortoPortugal
  2. 2.Departamento de BioquimicaInstituto de Ciencias Biomédicas Abel Salazar, Universidade do PortoPortoPortugal
  3. 3.Research Laboratory for Genetic InformationKiushu UniversityFukuokaJapan

Personalised recommendations