Journal of Comparative Physiology A

, Volume 167, Issue 3, pp 403–412 | Cite as

Coordination of legs during straight walking and turning in Drosophila melanogaster

  • R. Strauß
  • M. Heisenberg


Leg coordination of Drosophila melanogaster was studied using frame-by-frame film analysis.

  1. 1.

    For fastest walking alternating tripod coordination is observed which slightly deviates towards tetrapody as a function of step period. During acceleration or deceleration legs may transiently recover in diagonal pairs.

  2. 2.

    Mean step length increases with step frequency.

  3. 3.

    Mean recovery stroke duration increases with step period and plateaus beyond a period of about 110 ms. Middle legs recover significantly faster than others.

  4. 4.

    Ipsilateral footprints are transversally separated.

  5. 5.

    Walking is usually initiated in tripod coordination (frequently in combination with a turn), otherwise in an accelerating sequence which rapidly shifts towards tripod pattern. Flies can stop abruptly or decelerate over about one metachronal wave.

  6. 6.

    Short interruptions in walking are observed. Legs interrupted during swing phase stay lifted and finish recovery thereafter.

  7. 7.

    Slight changes in walking direction are obtained by altering step lengths only. Tight turns are composed of two or three phases with backward, zero and forward translatory components. In fast turning tripod coordination is maintained. Otherwise body sides can decouple widely. In all turns numbers of contralateral metachronal waves were equal.


Results are compared to those for other walking insects and their relevance in screens for locomotor mutants is discussed.

Key words

Drosophila behavior Insect locomotion Leg coordination Turning behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bässler U (1983) Neural basis of elementary behavior in stick insects. Studies of brain function, vol X. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster studied on wild-type and the mutant optomotor-blind. J Neurogenet 3:87–109Google Scholar
  3. Bell WJ, Schal C (1980) Patterns of turning in courtship orientation of the male German cockroach. Anim Behav 28:86–94Google Scholar
  4. Bülthoff H, Götz KG, Herre M (1982) Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster. J Comp Physiol 148:471–481Google Scholar
  5. Burns MD (1973) The control of walking in Orthoptera. J Exp Biol 58:45–58Google Scholar
  6. Camhi JM, Levy A (1988) Organization of a complex movement: fixed and variable components of the cockroach escape behavior. J Comp Physiol A 163:317–328Google Scholar
  7. Cruse H (1979a) A new model describing the coordination pattern of the legs of a walking stick insect. Biol Cybern 32:107–113Google Scholar
  8. Cruse H (1979b) The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus. Physiol Entomol 4:121–124Google Scholar
  9. Cruse H (1980a) A quantitative model of walking incorporating central and peripheral influences. I. The control of the individual leg. Biol Cybern 37:131–136Google Scholar
  10. Cruse H (1980b) A quantitative model of walking incorporating central and peripheral influences. II. The connections between the different legs. Biol Cybern 37:137–144Google Scholar
  11. Delcomyn F (1969) Reflexes and locomotion in the American cockroach. Ph.D. Thesis, University of OregonGoogle Scholar
  12. Delcomyn F (1971) The locomotion of the cockroach Periplaneta americana. J Exp Biol 54:443–452Google Scholar
  13. Götz KG (1980) Visual guidance in Drosophila. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and neurobiology of Drosophila. Plenum Press, New York London, pp 391–407Google Scholar
  14. Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitfly Drosophila. J Comp Physiol 85:235–266Google Scholar
  15. Graham D (1972) A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J Comp Physiol 81:23–52Google Scholar
  16. Graham D (1977) Simulation of a model for the coordination of leg movement in free walking insects. Biol Cybern 26:187–198Google Scholar
  17. Graham D (1978) Unusual step patterns in the free walking grasshopper Neoconocephalus robustus. I. General features of the step patterns. J Exp Biol 73:147–157Google Scholar
  18. Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140Google Scholar
  19. Grigliatti T, Hall L, Rosenbluth R, Suzuki DT (1973) Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Molec Gen Genet 120:107–114Google Scholar
  20. Hall JC (1982) Genetics of the nervous system in Drosophila. Q Rev Biophys 15:223–479Google Scholar
  21. Hall JC, Greenspan RJ (1979) Genetic analysis of Drosophila neurobiology. Ann Rev Genet 13:127–195Google Scholar
  22. Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol (Lond) 256:415–439Google Scholar
  23. Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol 117:127–162Google Scholar
  24. Heisenberg M, Wolf R (1984) Vision in Drosophila. Genetics of microbehavior. Studies of brain function, vol XII. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Hughes GM (1952) The co-ordination of insect movements. I. The walking movements of insects. J Exp Biol 29:267–284Google Scholar
  26. Jander JP, Wendler G (1978) Zur Steuerung des Kurvenlaufs bei Stabheuschrecken (Carausius morosus). In: Hauske G, Butenandt E (eds) Kybernetik 1977. Oldenbourg, München, pp 388–392Google Scholar
  27. Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington, Publication No. 627. Washington, D.C.Google Scholar
  28. Rubin GM (1988) Drosophila melanogaster as an experimental organism. Science 240:1453–1459Google Scholar
  29. Schalet A (1972) Report. Drosophila Inform Serv 49:36Google Scholar
  30. Schmidt-Nielson BK, Hall LM (1977) An abnormal walking mutant associated with a translocation. Drosophila Inform Serv 52:71–72Google Scholar
  31. Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250Google Scholar
  32. Wendler G (1968) Ein Analogmodell der Beinbewegungen eines laufenden Insekts. In: Marko H, Färber G (eds) Kybernetik 1968. Oldenbourg, München, pp 68–74Google Scholar
  33. Wendler G (1978) Erzeugung und Kontrolle koordinierter Bewegungen bei Tieren — Beispiele an Insekten. In: Hauske G, Butenandt E (eds) Kybernetik 1977. Oldenbourg, München, pp 11–34Google Scholar
  34. Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103–122Google Scholar
  35. Zolotov V, Frantsevich L, Falk E-M (1975) Kinematik der phototaktischen Drehung bei der Honigbiene Apis mellifera L. J Comp Physiol 97:339–353Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • R. Strauß
    • 1
  • M. Heisenberg
    • 1
  1. 1.Institut für Genetik und Mikrobiologie der UniversitätWürzburgF.R. Germany

Personalised recommendations