Geologische Rundschau

, Volume 84, Issue 1, pp 49–58 | Cite as

Benthic-pelagic coupling in the Greenland-Norwegian Sea and its effect on the geological record

  • Gerhard Graf
  • Sebastian A. Gerlach
  • Peter Linke
  • Wolfgang Queisser
  • Will Ritzrau
  • Annette Scheltz
  • L. Thomsen
  • Ursula Witte
Original Paper


The sedimentation pattern of organic material in the Greenland-Norwegian Sea is reflected in the surface sediments, although less than 0.5% of the organic matter is buried in the sediment. Maximum fluxes and benthic responses are observed during June and/or August/September, following the pattern of export production in the pelagial zone. The annual remineralization rate on the Vøring Plateau is 3.0 g C m−2 a −1 Freshly settled phytodetritus, as detected by chlorophyll measurements, is rapidly mixed into the sediment and decomposed. It stimulates the activity of benthic organisms, especially foraminifera. The mixing coefficient for this material is Db=0.2 cm2 d−1, which is two to three orders of magnitude higher than that estimated from radiotracer methods. The effect on the geological record, however, is likely to be small. Chlorophyll-containing particles are at first very evenly distributed on the seafloor. After partial decomposition and resuspension, a secondary redistribution of particles occurs which can result in the formation of a high accumulation area, with an up to 80-fold increase in the sedimentation rate by lateral advection. This is mainly due to physical processes, because biodeposition mediated by benthic animals increases sedimentation by only a factor of two or three.

Key words

Benthic-pelagic coupling Greenland-Norwegian Sea Remineralization Bioturbation Sediment accumulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abele-Oeschger D (1991) Potential of some carotenoids in two recent sediments of Kiel Bight as biogenic indicators of phytodetritus. Mar Ecol Prog Ser 70:83–92Google Scholar
  2. Altenbach AV (1992) Short term processes and patterns in the foraminiferal response to organic flux rates. Mar Micropalaeontol 19:119–129Google Scholar
  3. Bacon MP, Loeff MMRvd (1989) Removal of thorium-234 by scavenging in the bottom nepheloid layer of the ocean. Earth Planet Sci Lett 92:157–164Google Scholar
  4. Barnett PRO, Watson J, Conelly D (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal, and abyssal sediments. Oceanol Acta 7:399–408Google Scholar
  5. Billett DSM, Lampitt RS, Rice ALM, Mantoura RFC (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522Google Scholar
  6. Blaume F (1992) Hochakkumulationsgebiete am norwegischen Kontinentalhang: Sedimentologische Abbilder Topographiegeführter Strömungsmuster. Ber SFB 313, Univ Kiel No 36:1–150Google Scholar
  7. Bodungen B von, Theilen F, Werner F (1988) Poseidon Reise 141–2/142 vom 17. 10. 1987–18. 11. 1987, Poseidon-Reise 146–1 vom 25. 4.-11. 5. 1988, Poseidon-Reise 146–3 vom 29. 5.-19. 6. 1988, Berichte der Fahrtleiter. Ber SFB 313 Univ Kiel No 11:1–66Google Scholar
  8. Bodungen B von, Voss M, Wunsch M (1991) Vertical paerticle flux in the Norwegian Sea. In: Wassmann P, Heiskanen AS, Lindahl O (eds) Sediment Trap Studies in the Nordic Countries 2. Nurmi Print, Nurmijärvi, pp 116–136Google Scholar
  9. Bodungen B von, Antia A, Bauerfeind E, Haupt O, Koeve W, Peeken I, Peinert R, Reitmeier S, Thomsen C, Voss M, Wunsch M, Zeller U, Zeitzschel B. Pelagic processes and vertical flux of particles: an overview over a long-term comparative study in the Norwegian Sea and Greenland Sea. Geol Rundsch 84: 11–27Google Scholar
  10. Boudreau BP (1986a) Mathematics of tracer mixing in sediments: I. spatially-dependant, diffusive mixing. Am J Sci 286:161–198Google Scholar
  11. Boudreau BP (1986b) Mathematics of tracer mixing in sediments: II. nonlocal mixing and biological conveyor-belt phenomena. Am J Sci 286:199–238Google Scholar
  12. Boudreau BP (1987) Mathematics of tracer mixing in sediments: III. The theory of nonlocal mixing within sediments. Am J Sci 287:693–719Google Scholar
  13. Brandt A (1993) Composition, abundance, and diversity of peracarid crustaceans on a transect of the Kolbeinsey Ridge, north of Iceland. Polar Biol 13:565–576Google Scholar
  14. Cochran JK (1985) Particle mixing rates in sediments of the eastern equatorial Pacific: evidence from 210Pb, 239,240Pu and 137Cs distributions at MANOP sites. Geochim Cosmochim Acta 49:1195–1210Google Scholar
  15. Erlenkeuser H, Balzer W (1988) Rapid appearance of Chernobyl radiocesium in the deep Norwegian Sea sediments. Oceanol Acta 11:101–106Google Scholar
  16. Gardner WD, Southard JB, Hollister CD (1985) Sedimentation, resuspension and chemistry of particles in the Northwest Atlantic. Mar Geol 65:199–242Google Scholar
  17. Gerlach SA, Graf G (1991) Europaisches Nordmeer, Reise Nr. 13, 6. Juli-24. August 1990. Meteor-Ber Univ Hamburg No 91–2:1–217Google Scholar
  18. Gerlach SA, Thiede J, Graf G, Werner F (1986) Forschungsschiff Meteor, Reise 2 vom 19. Juni bis 16. Juli 1986, Forschungsschiff Poseidon, Reise 128 vom 7. Mai bis 8. Juni 1986. Ber SFB 313 Univ Kiel No 4:1–140Google Scholar
  19. Gerlach SA, Theilen F, Werner F (1987) Forschungsschiff Poseidon, Reise 119 vom 16. Juli bis 1. August 1985. Forschungsschiff Poseidon, Reise 120 vom 4. August bis 20. August 1985. Forschungsschiff Valdivia, Reise 201–48A vom 17. Juli bis 31. Juli 1986. Forschungsschiff Poseidon, Reise 137 vom 3. Februar bis 20. Februar 1987. Ber SFB 313, Univ Kiel No 5:1–94Google Scholar
  20. Graf G (1989a) Benthic-pelagic coupling in a deep-sea benthic community. Nature 341:437–439Google Scholar
  21. Graf G (1989b) Die Reaktionen des Benthals auf den saisonalen Partikelfluß und die laterale Advektion, Bowie deren Bedeutung für Sauerstoff- und Kohlenstoffbilanzen. Ber SFB 313 Univ Kiel: 1–77Google Scholar
  22. Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190Google Scholar
  23. Graf G, Linke P (1992) Adenosine nucleotides as indicators of deep-sea benthic metabolism. In: Rowe GT, Pariente V (eds) Deep-Sea Food Chains and the Global Carbon Cycle. Kluwer Academic, Dordrecht, Boston, London, pp 237–243Google Scholar
  24. Grasshoff K (1976) Methods of Sea Water Analysis. Verlag Chemie, Weinheim, pp 1–317Google Scholar
  25. Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic-benthic coupling in polar regions: a benthic perspective. J Mar Syst 2:495–518Google Scholar
  26. Hecker B (1990) Photographic evidence for the rapid flux of particles to the seafloor and their transport down the continental slope. Deep-Sea Res 37:1773–1782Google Scholar
  27. Heeger T (1990) Elektronenmikroskopische Untersuchungen zur Ernährungsbiologie benthischer Foraminiferen. Ber SFB 313 Univ Kiel No 21:1–139Google Scholar
  28. Hirschleber H, Theilen F, Balzer W, Bodungen B von, Thiede J (1988) Forschungsschiff Meteor, Reise 7 vom 1. Juni bis 28. September 1988. Ber SFB 313 Univ Kiel No 10:1–358Google Scholar
  29. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen (BPP) p 167Google Scholar
  30. Jensen P (1992a) ‘An Enteropneust's Nest’: results of the burrowing traits by the deep-sea acorn worm Stereobalanus canadensis (Spengel). Sarsia 77:125–129Google Scholar
  31. Jensen P (1992b) Cerianthus vogti Danielssen, 1890 (Anthozoa: Ceriantharia). A species inhabiting an extended tube system deeply buried in deep-sea sediments off Norway. Sarsia 77:75–80Google Scholar
  32. Jensen P, Rumohr J, Graf G (1992) Sedimentological and biological differences across a deep-sea ridge exposed to advection and accumulation of fine-grained particles. Oceanol Acta 15:287–296Google Scholar
  33. Köster M, Charfreitag O, Meyer-Reil L-A (1991) Availability of nutrients to a deep-sea benthic microbial community: results from a ship-board experiment. Kiel Meeresforsch Sonderh 8:127–133Google Scholar
  34. Lampitt RS (1985) Evidence for seasonal deposition of detritus to the deep-seafloor and its subsequent resuspension. Deep-Sea Res 32:885–897Google Scholar
  35. Linke P (1992) Metabolic adaptations of deep-sea benthic foraminifera to seasonally varying food input. Mar Ecol Prog Ser 81:51–63Google Scholar
  36. Linke P, Lutze GF (1993) Microhabitat preferences of benthic foraminifera — a static concept or a dynamic adaptation to optimize food acquisition? Mar Micropaleontol 20:215–234Google Scholar
  37. Loo L-O, Rosenberg R (1989) Bivalve suspension-feeding dynamics and benthic-pelagic coupling in an eutrophicated marine bay. J Exp Mar Biol Ecol 130:253–276Google Scholar
  38. Lutze GF, Altenbach A (1988) Rupertina stabilis (Wallich), a highly adapted, suspension feeding foraminifer. Meyniana 40:55–69Google Scholar
  39. Meyer-Reil L-A, Koster M (1992) Microbial life in pelagic sediments: the impact of environmental parameters on enzymatic degradation of organic material. Mar Ecol Prog Ser 81:65–72Google Scholar
  40. Muschenheim DK (1987) The role of hydrodynamic sorting of seston in the nutrition of a benthic suspension feeder, Spio setosa (Polychaeta: Spiobnidae). Biol Oceanogr 4:265–288Google Scholar
  41. Peinert R, Bathmann U, Bodungen Bv, Noji T (1987) The impact of grazing on spring phytoplankton growth and sedimentation in the Norwegian current. Mitt Geol-Paläontol Inst Univ Hamburg Sb 62:149–164Google Scholar
  42. Pfannkuche O (1993a) Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N 20°W. Deep-Sea Res 40:135–149Google Scholar
  43. Pfannkuche O (1993b) Standing stock, Aktivität und Respirationsraten des Tiefseebenthos im NO-Atlantik. In: Pfannkuche O, Rheinheimer G, Thiel H (eds) BIO-C-FLUX Biologischer Kohlenstofffluß in der bodennahen Wasserschicht des küsten-fernen Ozeans. Ber IFM Kiel Nr 242:51–79Google Scholar
  44. Pfannkuche O, Duinker JC, Graf G, Henrich R, Thiel H, Zeitschel B (1993) Nordatlantik 92, Reise Nr. 21, 16. März-31. August 1992. Meteor-Ber Univ Hamburg No 93–4:1–281Google Scholar
  45. Romero-Wetzel MB (1987) Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments. Mar Biol 96:87–91Google Scholar
  46. Romero-Wetzel MB (1989) Branched burrow-systems of the enteropneust Stereobalanus canadensis (Spengel) in deep-sea sediments of the Vøring Plateau, Norwegian Sea. Sarsia 74:85–89Google Scholar
  47. Romero-Wetzel MB, Gerlach SA (1991) Abundance, biomass, size-distribution and bioturbation potential of deep-sea macrozoobenthos on the Vøring Plateau (1200–1500 m, Norwegian Sea). Meeresforsch 33:247–265Google Scholar
  48. Sarnthein M, Altenbach A. Late quaternary changes in surface water and deepwater masses of the nordic seas and northeastern North-Atlantic — a review. Geol Rundsch 84: 89–107Google Scholar
  49. Smith CR, Jumars PA, DeMaster DJ (1986) In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-seafloor. Nature 323:251–253Google Scholar
  50. Smith CR, Pope RH, Demaster DJ, Magaard L (1993) Age-dependent mixing of deep-sea sediments. Geochim Cosmochim Acta 57:1473–1488Google Scholar
  51. Struck U (1992) Zur Paläo-Ökologie benthischer Foraminiferen im Europäischen Nordmeer während der letzten 600000 Jahre. Ber SFB 313 Univ Kiel No 38:1–89Google Scholar
  52. Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288:260–263Google Scholar
  53. Suess E, Altenbach AV (1992) Europaisches Nordmeer, Reise Nr. 17, 15. Juli-29. August 1991. Meteor-Ber Univ Hamburg No 92–3:1–164Google Scholar
  54. Sun M, Aller RC, Lee C (1991) Early diagenesis of chlorophyll-a in Long Island Sound sediments: a measure of carbon flux and particle reworking. J Mar Res 49:379–401Google Scholar
  55. Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFG, Turley CM, Patching JW, Riemann F (1988/1989) Phytodetritus on the deep-sea floor in a central oceanic region of the Northeast Atlantic. Biol Oceanogr 6:203–239Google Scholar
  56. Thomsen L (1992) Untersuchungen zur Bodennepheloidschicht am westlichen Barents See Kontinentalhang. Ber SFB 313 Univ Kiel No 42:1–93Google Scholar
  57. Thomsen L, Graf G. Characteristics of suspended particulate matter in the benthic boundary layer of the continental margin of the western Barents Sea. Oceanol Acta, submittedGoogle Scholar
  58. Thomsen L, Graf G, Martens V, Steen E (1994) An instrument for sampling water from the benthic boundary layer. Cont Shelf Res 14:871–882Google Scholar
  59. Thomsen L, Graf G, Juterzenka K von, Witte U. An in situ experiment to investigate the depletion of seston above an interface feeder field on the continental slope of the western Barents Sea. Mar Ecol Prog Ser, submittedGoogle Scholar
  60. Wagner T (1993) Organisches Material in pelagischen Sedimenten: Glaziale/Interglaziale Variationen im Europäischen Nordmeer. Ber SFB 313 Univ Kiel No 42:1–138Google Scholar
  61. Zeitzschel B, Lenz J, Thiel H, Boje R, Passow U, Stuhr A (1990) Expedition Plankton 89 — Benthos 89, Reise Nr. 10, 19. März-31. August 1989. Meteor-Ber Univ Hamburg No 90–1:1–216Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Gerhard Graf
    • 1
  • Sebastian A. Gerlach
    • 2
  • Peter Linke
    • 1
  • Wolfgang Queisser
    • 1
  • Will Ritzrau
    • 3
  • Annette Scheltz
    • 3
  • L. Thomsen
    • 1
  • Ursula Witte
    • 3
  1. 1.GEOMARKielGermany
  2. 2.IFM KielKielGermany
  3. 3.SFB 313KielGermany

Personalised recommendations