Journal of Comparative Physiology A

, Volume 175, Issue 6, pp 695–708 | Cite as

The halteres of the blowfly Calliphora

II. Three-dimensional organization of compensatory reactions to real and simulated rotations
  • Gerbera Nalbach
  • R. Hengstenberg
Original Paper


We quantitatively analysed compensatory head reactions of flies to imposed body rotations in yaw, pitch and roll and characterized the haltere as a sense organ for maintaining equilibrium. During constant velocity rotation, the head first moves to compensate retinal slip and then attains a plateau excursion (Fig. 3). Below 500°/s, initial head velocity as well as final excursion depend linearily on stimulus velocities for all three axes. Head saccades occur rarely and are synchronous to wing beat saccades (Fig. 5). They are interpreted as spontaneous actions superposed to the compensatory reaction and are thus not resetting movements like the fast phase of ‘vestibulo-ocular’ nystagmus in vertebrates. In addition to subjecting the flies to actual body rotations we developed a method to mimick rotational stimuli by subjecting the body of a flying fly to vibrations (1 to 200 μm, 130 to 150 Hz), which were coupled on line to the fly's haltere beat. The reactions to simulated Coriolis forces, mimicking a rotation with constant velocity, are qualitatively and to a large extent also quantitatively identical to the reactions to real rotations (Figs. 3, 7–9). Responses to roll- and pitch stimuli are co-axial. During yaw stimulation (halteres and visual) the head performs both a yaw and a roll reaction (Fig. 3e,f), thus reacting not co-axial. This is not due to mechanical constraints of the neck articulation, but rather it is interpreted as an ‘advance compensation’ of a banked body position during free flight yaw turns (Fig. 10).

Key words

Haltere Calliphora Insect flight Flight control Head reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmann-Erb D, Heide G (1990) Kontraktionsmodus direkter Flugsteuermuskeln von Calliphora. Proc Göttingen Neurobiol Conf 18:41Google Scholar
  2. Blondeau J (1981) Aerodynamic capabilities of flies, as revealed by a new technique. J Exp Biol 92:155–163Google Scholar
  3. Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531Google Scholar
  4. Carpenter RHS (1988) Movements of the eyes. 2nd edition, Pion, LondonGoogle Scholar
  5. Collewijn H (1970) Oculomotor reactions in the cuttlefish, Sepia officinales. J Exp Biol 52:369–384Google Scholar
  6. Demoll R (1918) Der Flug der Insekten und der Vögel. Gustav Fischer, JenaGoogle Scholar
  7. Dombrowski UJ (1991) Untersuchungen zur funktionellen Organisation des Flugsystems von Manduca sexta (L.) Dissertation Universität KölnGoogle Scholar
  8. Ennos AR (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142:49–85Google Scholar
  9. Faust R (1952) Untersuchungen zum Halterenproblem. Zool Jahrb Physiol 63:325–366Google Scholar
  10. Fraenkel G, Pringle JWS (1938) Halteres of flies as gyroskopic organs of equilibrium. Nature 141:919–921Google Scholar
  11. Geiger G, Poggio T (1977) On head and body movements of flying flies. Biol Cybern 25:177–180Google Scholar
  12. Gewecke M (1967) Die Wirkung von Luftströmung auf die Antennen und das Flugverhalten der Blauen Schmeißfliege (Calliphora erythrocephala). Z Vergl Physiol 54: 121–164Google Scholar
  13. Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybern 35:101–112Google Scholar
  14. Grieger B, Bolz J, Varju D (1981) On the visually evoked head nystagmus of Tenebrio molitor and other beetles. Biol Cybern 41:1–3Google Scholar
  15. Grün H von der (1989) Quantitative Untersuchungen des optokinetischen Nystagmus der malaiischen Stielaugenfliege Cyrtodiopsis whitei Curran (Diopsidae, Diptera). Dissertation, Universität RegensburgGoogle Scholar
  16. Heisenberg M, Wolf R (1984) Vision in Drosophila. Genetics of Microbehavior. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  17. Hengstenberg R (1971) Das Augenmuskelsystem der Stubenfliege Musca domestica I. Analyse der ‘clock-spikes’ und ihrer Quellen. Kybernetik 2:56–77Google Scholar
  18. Hengstenberg R (1984) Roll-stabilization, during flight of the blowfly's head and body by mechanical and visual cues. In: Varju D, Schnitzler H (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 121–134Google Scholar
  19. Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 163:151–165Google Scholar
  20. Hengstenberg R (1991) Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process. The Neurosciences 3:19–29Google Scholar
  21. Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227:455–482Google Scholar
  22. Henn V, Straumann D, Hess BJM, Haslwanter Th, Kawachi N (1992) Three-dimensional transformations from vestibular and visual input to oculomotor output. Ann New York Acad Sci 656:166–180Google Scholar
  23. Hollick FSJ (1940) The flight of the dipterous fly Muscina stabulans. Phil Trans R Soc Lond B 230:357–390Google Scholar
  24. Holst E von, Küchemann D (1941) Biologische und aerodynamische Probleme des Tierflugs. Naturwissenschaften 29:348–362Google Scholar
  25. Horn E, Knapp A (1984) On the invariance of visual stimulus efficacy with respect to variable spatial positions. J Comp Physiol A 154:555–567Google Scholar
  26. Kien J, Land MF (1978) The fast phase of optokinetic nystagmus in the locust. Physiol Entomol 3:53–57Google Scholar
  27. Land MF (1975) Head movements and fly vision. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 469–489Google Scholar
  28. Mittelstaedt H (1950) Physiologie des Geichgewichtssinnes bei fliegenden Libellen. Z Vergl Physiol 32:422–463Google Scholar
  29. Nalbach G (1985) Die Haltere als Drehsinnesorgan. Zulassungsarbeit für das Staatsexamen, Universität TübingenGoogle Scholar
  30. Nalbach G (1988) Linear oscillations elicit haltere mediated turning illusions and entrainment in the blowfly Calliphora. Proc Göttingen Neurobiol Conf 16:131Google Scholar
  31. Nalbach G (1991a) Verhaltensuntersuchungen zur Funktion der Halteren bei der Schmeißfliege Calliphora erythrocephala mit echten und simulierten Drehreizen. Dissertation, Universität TübingenGoogle Scholar
  32. Nalbach G (1991b) The halteres of Calliphora — a measuring system with non-orthogonal axes. Proc Göttingen Neurobiol Conf 19:41Google Scholar
  33. Nalbach G (1991c) Body and gaze stabilization via sense organs for rotational velocity: analysis of the haltere function with vibrational stimuli. Verh Dtsch Zool Ges 84:355Google Scholar
  34. Nalbach G (1993) The halteres of the blowfly Calliphora. I. Kinematics and dynamics. J Comp Physiol A 173:293–300Google Scholar
  35. Nalbach G (1994) Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system. Neuroscience 61:149–163Google Scholar
  36. Nalbach G, Hengstenberg R (1986) Die Halteren von Calliphora als Drehsinnesorgan. Verh Dtsch Zool Ges 79:229Google Scholar
  37. Nalbach HO (1990) Multisensory control of eyestalk orientation in decapod crustaceans: an ecological approach. J Crust Biol 10(3):382–399Google Scholar
  38. Nalbach HO, Nalbach G, Forzin L (1989) Visual control of eyestalk orientation in crabs: vertical optokinetics, visual fixation of the horizon, and eye design. J Comp Physiol A 160:127–135Google Scholar
  39. Neil DM, Schöne H, Scapini F, Miyan JA (1983) Optokinetic responses, visual adaptation and multisensory control of eye movements in the spiny lobster, Palinurus vulgaris. J Exp Biol 107:349–366Google Scholar
  40. Pix W, Nalbach G, Zeil J (1993) Strepsipteran forewings are haltere-like organs of equilibrium. Naturwissenschaften 80:371–374Google Scholar
  41. Preuss T, Hengstenberg R (1992) Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 171:483–493Google Scholar
  42. Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Phil Trans R Soc Lond B 233:347–384Google Scholar
  43. Pringle JWS (1968) Comparative physiology of the flight motor. Advances in Insect Physiology 5:163–227Google Scholar
  44. Robert D, Rowell CHF (1992) Locust flight steering I. Head movements and the organization of correctional manoeuvres. J Comp Physiol A 171:41–51Google Scholar
  45. Rossel S (1980) Foveal fixation and tracking in the praying Mantis. J Comp Physiol 139:307–331Google Scholar
  46. Sandeman DC (1980) Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata). J Comp Physiol 136:361–367Google Scholar
  47. Sandeman DC (1983) The balance and visual systems of the swimming crab: their morphology and interaction. Fortschr Zool 28:213–229Google Scholar
  48. Sandeman DC, Markl H (1980) Head movements in flies (Calliphora) produced by deflection of the halteres. J Exp Biol 85:43–60Google Scholar
  49. Schneider G (1953) Die Halteren der Schmeißfliege (Calliphora) als Sinnesorgane und als mechanische Flugstabilisatoren. Z Vergl Physiol 35:416–458Google Scholar
  50. Schöne H (1984) Spatial orientation. Princeton University Press, PrincetonGoogle Scholar
  51. Shepheard P (1974) Control of head movement in the locust, Schistocerca gregaria. J Exp Biol 60:735–767Google Scholar
  52. Stellwaag F (1916) Wie steuern die Insekten während des Fluges? Biol Zbl 36:30–44Google Scholar
  53. Tracey D (1975) Head movements mediated by halteres in the fly (Musca domestica). Experientia 31:44–45Google Scholar
  54. Traenkle CA (1977) Flugmechanik II, Stabilität und Steuerung. Minerva Publikation, MünchenGoogle Scholar
  55. Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). I. Organization of the flight motor. Phil Trans R Soc Lond B 312:527–551Google Scholar
  56. Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). II. Pursuit of targets. Phil Trans R Soc Lond B 312:553–579Google Scholar
  57. Wagner H (1986c) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). III. Interactions between angular movement induced by wideand small-field stimuli. Phil Trans R Soc Lond B 312:581–595Google Scholar
  58. Wallman J, Letelier JC (1993) Eye movements, head movements, and gaze stabilization in birds. In: Zeigler HP, Bischof HJ (eds) Vision, brain, and behavior in birds. MIT Press, Cambridge LondonGoogle Scholar
  59. Wienrich M (1979) Untersuchung des neuromotorischen Erregungsmusters in direkten Flugmuskeln von Fliegen, die während des Fluges um ihre Hochachse gedreht werden. Diplomarbeit, Universität DüsseldorfGoogle Scholar
  60. Zanker JM (1988a) How does lateral abdomen deflection contribute to flight control of Drosophila melanogaster? J Comp Physiol A 162:581–588Google Scholar
  61. Zanker JM (1988b) On the mechanism of speed and altitude control in Drosophila melanogaster. Physiol Entomol 13:351–361Google Scholar
  62. Zanker JM (1990) The wing beat of Drosophila melanogaster III. Control. Phil Trans R Soc Lond B 327:45–64Google Scholar
  63. Zanker JM, Egelhaaf M, Warzecha A-K (1991) On the coordination of motor output during visual flight control of flies. J Comp Physiol A 169:127–134Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Gerbera Nalbach
    • 1
    • 2
  • R. Hengstenberg
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany
  2. 2.Zoologisches Institut der Universität zu Köln, Lehrstuhl für TierphysiologieKölnGermany

Personalised recommendations