Advertisement

Geologische Rundschau

, Volume 82, Issue 2, pp 241–247 | Cite as

Submerged upper Holocene beachrock on San Salvador Island, Bahamas: implications for recent sea-level history

  • P. Kindler
  • R. J. Bain
Article

Abstract

Sedimentological, petrographic and radiometric data from a submerged beachrock on San Salvador Island, Bahamas, provide new information about the Late Holocene sea-level history in this area.

At French Bay, on the southern shore of the island, samples of beachrock collected at a depth of 1 m below low tide level yielded an average 14C age of 965 ± 60 years before present. These samples further display a well developed fenestral porosity and present an early generation of low Mg calcite meniscus cement. These features characterize intertidal and supratidal settings; they are not consistent with the present beachrock position and the reported Late Holocene sea-level history in the Bahamas. A 1.5–2m low stand of the sea about 1000 years ago would best explain the observed particularities of the French Bay beachrock.

This example from San Salvador shows that the smooth trend of Late Holocene sea-level rise proposed by previous workers might be overprinted by high frequency, low amplitude fluctuations. Recognition of these fluctuations is fundamental when calculating rates of sea-level rise and evaluating the coastal response to a marine transgression.

Key words

Sea-level history Bahamas BeachrocksHolocene Carbonates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bain RJ (1985) Eolian dune, Watling roadcut. In: Curran HA (ed) Pleistocene and Holocene Carbonate Environments on San Salvador Island, Bahamas. Guidebook for the Geological Society of America, Orlando Annual Meeting Field Trip, Bahamian Field Station, Fort Lauderdale: 129–132Google Scholar
  2. Bain RJ (1989) Exposed beachrock: its influence on beach processes and criteria for recognition. In: Mylroie JE (ed) Proceedings of the Fourth Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 33–44Google Scholar
  3. Bain RJ (ed) (1991) Proceedings of the Fifth Symposium on the Geology of the Bahamas. Bahamian Field Station, San Salvador: 247 ppGoogle Scholar
  4. Bain RJ, Kindler P. Irregular fenestrae in Bahamian eolianites: a rainstorm-induced origin. J Sedim Petrol, submittedGoogle Scholar
  5. Ball MM (1967) Carbonate sand bodies of Florida and the Bahamas. JSedim Petrol 37: 556–591Google Scholar
  6. Bathurst RBG (1975) Carbonate Sedimentology and Diagenesis. Elsevier, Amsterdam: 658 ppGoogle Scholar
  7. Beier JA (1985) Diagenesis of Quaternary Bahamian beachrock: petrographic and isotopic evidence. J Sedim Petrol 55: 755–761Google Scholar
  8. Boardman M, Neumann AC, Rasmussen KA (1989) Holocene sea level in the Bahamas. In: Mylroie JE (ed) Proceedings of the Fourth Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 45–52Google Scholar
  9. Bowen DQ (1985) Quaternary Geology – A Stratigraphic Framework for Multidisciplinary Work. Pergamon Press, Oxford: 237 ppGoogle Scholar
  10. Carew JL, Mylroie JE (1985) The Pleistocene and Holocene stratigraphy of San Salvador Island, Bahamas, with reference to marine and terrestrial lithofacies at French Bay. In: Curran HA (ed) Pleistocene and Holocene Carbonate Environments on San Salvador Island, Bahamas. Guidebook for the Geological Society of America, Orlando Annual Meeting Field Trip. Bahamian Field Station, Fort Lauderdale: 11–61Google Scholar
  11. Chen JH, Curran HA, White B, Wasserburg GJ (1991) Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geol Soc Am Bull 103: 82–97Google Scholar
  12. Clark JA, Farrell WE, Peltier WR (1978) Global changes in postglacial sea level: a numerical calculation. Quaternary Res 9: 265–287Google Scholar
  13. Curran HA (1987) Proceedings of the Third Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 254 ppGoogle Scholar
  14. Davaud E, Strasser A (1984) Progradation, cimentation, érosion: évolution sédimentaire et diagénétique récente d'un littoral carbonaté (Bimini, Bahamas). Eclog Geol Helv 77: 449–468Google Scholar
  15. Digerfeldt G, Hendry MD (1987) An 8000 year Holocene sea-level record from Jamaica: implications for interpretation of Caribbean reef and coastal history. Coral Reefs 5: 165–169Google Scholar
  16. Dill RE, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324: 55–58Google Scholar
  17. Dunham RJ (1970) Keystone vugs in carbonate beach deposits [abstract]. Am Assoc Petrol Geol 54: 845Google Scholar
  18. Fields MH (1989) Yachtsman's guide to the Bahamas. Tropic Isle Publishers, Red Bank: 454 ppGoogle Scholar
  19. Geyh MA, Schleicher H (1990) Absolute Age Determination. Physical and Chemical Dating Methods and their Application. Springer, Berlin Heidelberg New York: 503 ppGoogle Scholar
  20. Gifford JA (1973) A description of the geology of the Bimini Islands, Bahamas. Unpublished MS Thesis. University of Miami: 88 ppGoogle Scholar
  21. Halley RB, Harris PM (1979) Fresh-water cementation of a 1000-year-old oolite. J Sedim Petrol 49: 969–988Google Scholar
  22. Hanor JS (1978) Precipitation of beachrock cements: mixing of marine and meteoric waters vs. CO2 degassing. J Sedim Petrol 48: 489–501Google Scholar
  23. Hearty PJ, Kindler P (1992) The geological evolution of San Salvador, Bahamas. Abstracts and Program of the Sixth Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 11–12Google Scholar
  24. Illing LV (1954) Bahaman calcareous sands. Am Assoc Petrol Geol Bull 38: 1–95Google Scholar
  25. James NP, Choquette PW (1984) Limestones — the meteoric diagenetic environment. Geosci Can 11: 161–194Google Scholar
  26. Kindler P (1991) Keystone vugs in coastal dunes: an example from Eleuthera, Bahamas. In: Bain RJ (ed) Proceedings of the Fifth Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 117–123Google Scholar
  27. Kindler P (1992) Coastal response to the Holocene transgression in the Bahamas: episodic sedimentation versus continuous sea-level rise. Sedim Geol 80: 319–329Google Scholar
  28. Lidz BH, Shinn EA (1991) Paleoshorelines, reefs, and a rising sea: south Florida, USA. J. Coastal Res 7: 203–229Google Scholar
  29. Logan BW (1974) Inventory of diagenesis in Holocene-Recent carbonate sediments, Shark Bay, Western Australia. In: Logan BW (ed) Evolution and Diagenesis of Quaternary Carbonate Sequences, Shark Bay, Western Australia. Am Assoc Petrol Geol Mem No 22: 195–249Google Scholar
  30. Longman MW (1980) Carbonate diagenetic textures from nearsurface diagenetic environments. Am Assoc Petrol Geol Bull 64: 461–487Google Scholar
  31. Lynts GW (1970) Conceptual model of the Bahamian Platform for the last 135 million years. Nature 225: 1226–1228Google Scholar
  32. Mullins HT, Lynts GW (1977) Origin of the northwestern Bahama Platform: review and reinterpretation. Geol Soc Amer Bull 88: 1447–1461Google Scholar
  33. Mullins HT, Dolan J, Breen N, Andersen B, Gaylord M, Petruccione GL, Wellner RW, Melillo AJ, Jurgens AD (1991) Retreat of carbonate platforms: response to tectonic processes. Geology 19: 1089–1092Google Scholar
  34. Mylroie JE (ed) (1989) Proceedings of the Fourth Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 381 ppGoogle Scholar
  35. Parkinson RW (1989) Decelerating Holocene sea-level rise and its influence on Southwest Florida coastal evolution: a transgressive/regressive stratigraphy. J Sedim Petrol 59: 960–972Google Scholar
  36. Pindell JL (1985) Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and proto-Caribbean. Tectonics 4: 1–39Google Scholar
  37. Pirazzoli PA (1991) World Atlas of Holocene Sea-level Changes. Elsevier, Amsterdam: 300 ppGoogle Scholar
  38. Purdy EG (1963) Recent calcium carbonate facies of the Great Bahama Bank. J Geol 71: 472–497Google Scholar
  39. Reid RP, Browne KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19: 15–18Google Scholar
  40. Schlager W, Ginsburg RN (1981) Bahama carbonate platforms — the deep and the past. Mar Geol 44: 1–24Google Scholar
  41. Scholl DW, Stuiver M (1967) Recent submergence of Southern Florida: a comparison with adjacent coasts and other eustatic data. Geol Soc Am Bull 78: 437–454Google Scholar
  42. Scholl DW, Craighead FC Sr, Stuiver M (1969) Florida submergence curve revised: its relation to coastal sedimentation rates. Science 163: 562–564Google Scholar
  43. Scholle PA, Bebout DG, Moore CH (1983) Carbonate depositional environments. Am Assoc Petrol Geol Mem No 33: 708 ppGoogle Scholar
  44. Scoffin TP (1987) An Introduction to Carbonate Sediments and Rocks Blackie, Glasgow and London: 274 ppGoogle Scholar
  45. Sheridan RE, Mullins HT, Austin JA Jr, Ball MM, Ladd JW (1988) Geology and geophysics of the Bahamas. In: Sheridan RE, Grow JA (eds) The Geology of North America. Vol. 1–2. Geological Society of America, Boulder: 329–364Google Scholar
  46. Shinn EA (1983) Birdseyes, fenestrae, shrinkage pores, and loferites: a reevaluation. J Sedim Petrol 53: 619–628Google Scholar
  47. Stieglitz RD, Inden RF (1969) Development of cavernous sediment in a non-beach environment. J Sedim Petrol 39: 342–344Google Scholar
  48. Strasser A, Davaud E, Jedoui Y (1989) Carbonate cements in Holocene beachrock: example from Bahiret el Biban, southeastern Tunisia. Sedim Geol 62: 89–100Google Scholar
  49. Tebbutt GE, Conley CD, Boyd DW (1965) Lithogenesis of a distinctive carbonate rock fabric. Univ Wyoming Contrib Geol 4: 1–13Google Scholar
  50. Teeter JW (1985) Proceedings of the Second Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 296 ppGoogle Scholar
  51. Teeter JW, Quick TJ (1990) Magnesium-salinity relation in the saline lake ostracode Cyprideis americana. Geology 18: 220–222Google Scholar
  52. Titus R (1987) Geomorphology, stratigraphy and the Quaternary history of San Salvador Island, Bahamas. In: Curran HA (ed) Proceedings of the Third Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 155–164Google Scholar
  53. Tucker ME, Wright PW (1990) Carbonate Sedimentology. Blackwell, Oxford: 482 ppGoogle Scholar
  54. Wanless HR (1982) Sea level is rising, so what? J Sedim Petrol 52: 1051–1054Google Scholar
  55. Winter J (1987) Speculations on prehistoric coastal topography of the Bahamas. In: Curran HA (ed) Proceedings of the Third Symposium on the Geology of the Bahamas. Bahamian Field Station, Fort Lauderdale: 205–213Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • P. Kindler
    • 1
  • R. J. Bain
    • 2
  1. 1.Département de Géologie et de PaléontologieUniversité de GenèveGeneveSwitzerland
  2. 2.Departement of GeologyUniversity of AkronAkronUSA

Personalised recommendations