Advertisement

Heavy metals in epigeic fauna: Trophic-level and physiological hypotheses

  • Ryszard Laskowski
  • Maciej Maryański
Article

Keywords

Heavy Metal Waste Water Water Management Water Pollution Physiological Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberici TM, Dopper WE, Storm GL, Yahner RH (1989) Trace metals in soil, vegetation, and voles from mine land treated with sewage sludge. J. Environ. Qual. 18: 115–120.Google Scholar
  2. Bengtsson G, Gunnarsson T, Rundgren S (1986) Effects of metal pollution on the earthworm Dendrobaena rubida (Sav.) in acidified soils. Water, Air, Soil Pollut. 28:361–383.Google Scholar
  3. Beyer WN (1986) A reexamination of biomagnification of metals in terrestrial food chains. Environmental Toxicology and Chemistry 5:863–864.Google Scholar
  4. Beyer WN, Cromartie EJ (1987) A survey of Pb, Cu, Zn, Cd, Cr, As, and Se in earthworms and in soil from diverse sites. Environmental Monitoring and Assessment 8:27–36.Google Scholar
  5. Beyer WN, Pattee OH, Sileo L, Hoffman DJ, Mulherin BM (1985) Metal contamination in wildlife living near two zinc smelters. Environ. Pollut. (A) 38:63–86.Google Scholar
  6. Collier BD, Cox GW, Johnson AW, Miller PC (1973) Dynamic ecology. Prentice-Hall, Inc., Engelwood Clifs, N. J.Google Scholar
  7. Ernst WHO, Joosse-van Damme ENG (1983) Umweltbelastung durch Mineral Stoffe Biologische Effekte. VEB Gustav Fischer Verlag, Jena.Google Scholar
  8. Friberg L, Nordberg GF, Vouk VB (Eds) (1979) Handbook on the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam-New York-Oxford.Google Scholar
  9. Grodzińska K, Godzik B, Darowska E, Pawłowska B (1987) Concentration of heavy metals in trophic chains of Niepołomice Forest, S. Poland. Ekol. Pol. 35:327–344.Google Scholar
  10. Hegestrom LJ, West SD (1989) Heavy metal accumulation in small mammals following sewage sludge application to forests. J. Environ. Qual. 18:345–349.Google Scholar
  11. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science Publishers Ltd, London New York.Google Scholar
  12. Hunter BA, Johnson MS, Thompson DJ (1987a) Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and vegetation contamination. J. Appl. Ecol. 24:573–586.Google Scholar
  13. Hunter BA, Johnson MS, Thompson DJ (1987b) Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. II. Invertebrates. J. Appl. Ecol. 24: 587–599.Google Scholar
  14. Hunter BA, Johnson MS, Thompson DJ (1987c) Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. III. Small mammals. J. Appl. Ecol. 24: 601–614.Google Scholar
  15. Janssen MPM, Bruins A, De Vries TH, Van Straalen (1991) Comparison of cadmium kinetics in four soil arthropod species. Arch. Environ. Contam. Toxicol. 20:305–312.Google Scholar
  16. Johnson MS, Roberts RD, Hutton M, Inskip MJ (1978) Distribution of lead, zinc and cadmium in small mammals from polluted environments. Oikos 30:153–159.Google Scholar
  17. Laskowski R (1991) Are the top carnivores endangered by heavy metal biomagnification? Oikos 60:387–390.Google Scholar
  18. Moriarty F (1975) Pollutants and animals: a factual perspective. George Allen & Unwin Ltd., London.Google Scholar
  19. Price PW, Rathcke BJ, Gentry DA (1974) Lead in terrestrial arthropods: Evidence for biological concentration. Environ. Ent. 3:370–372.Google Scholar
  20. Sokal RR, Rohlf FJ (1981) Biometry. W. H. Freeman and Company, New York.Google Scholar
  21. Streit B (1984) Effects of high copper concentrations on soil invertebrates (earthworms and oribatid mites): Experimental results and a model. Oecologia (Berlin) 64: 381–388.Google Scholar
  22. Tjell JC, Christensen TH, Bro-Rasmussen F (1983) Cadmium in soil and terrestrial biota, with emphasis on the Danish situation. Ecotoxicol. Environ. Safety 7:122–140.Google Scholar
  23. Van Straalen NM, Van Wensem J (1986) Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ. Pollut. (A) 42:209–221.Google Scholar
  24. Van Straalen NM, Burghouts TBA, Doornhof MJ, Groot GM, Janssen MPM, Joosse ENG, Van Meerendonk JH, Theeuwen JPJJ, Verhoef HA, Zoomer HR (1987) Efficiency of lead and cadmium excretion in populations of Orchesella cincta (Collembola) from various contaminated forest soils. J. Appl. Ecol. 24:953–968.Google Scholar
  25. Walker CH (1990) Kinetic model to predict bioaccumulation of pollutants. Functional Ecology 4:295–301.Google Scholar
  26. Wigglesworth VB (1977) The principles of insect physiology. Butler and Tanner Ltd, Frome.Google Scholar
  27. Willamo R, Nuorteva P (1987) The role of heavy metals in forest die-off. In: Anttila P, Kauppi P (eds.), Symposium of the Finnish Research Project on acidification (HAPRO). Ministry of the Environment, Ministry of Agriculture and Forestry, pp. 64–67.Google Scholar
  28. Woodwell GM, Wurster CF, Isaacson PA (1967) DDT residues in an east coast estuary: A case of biological concentration of a persistent insecticide. Science 156: 821–824.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Ryszard Laskowski
    • 1
  • Maciej Maryański
    • 1
  1. 1.Department of Ecosystem StudiesJagiellonian UniversityCracowPoland

Personalised recommendations