Advertisement

Geologische Rundschau

, Volume 82, Issue 4, pp 640–651 | Cite as

Boron isotope variations in nature: a synthesis

  • S. Barth
Article

Abstract

The large relative mass difference between the two stable isotopes of boron, 10B and 11B, and the high geochemical reactivity of boron lead to significant isotope fractionation by natural processes. Published δ11B values (relative to the NBS SRM-951 standard) span a wide range of ≈ 90‰. The lowest δ11B values around — 30‰ are reported for non-marine evaporite minerals and certain tourmalines. The most 11B-enriched reservoir known to date are brines from Australian salt lakes and the Dead Sea of Israel with δ11B values up to +59‰. Dissolved boron in present-day seawater has a constant world-wide δ11B value of + 39.5‰. In this paper, available δ11B data of a variety of natural fluid and solid samples from different geological environments are compiled and some of the most relevant aspects, including possible tracer applications of boron-isotope geochemistry, are summarized.

Key words

Boron isotopes Stable isotope geochemistry Isotope fractionation 

Résumé

La grande différence relative de masse entre les isotopes stables du bore, 10B et 11B, et la grande réactivité geochimique du bore ont pour conséquence un fractionnement isotopique naturel important. Les valeurs de δ11B publiées (par rapport au standard NBS SRM-951) varient de ≈ 90‰. Les valeurs de δ11B les plus basses (−30‰) correspondent aux evaporites non-marines et à certaines tourmalines. Le réservoir le plus enrichi en 11B est représenté par les saumures des lacs salés d' Australie et par la Mer Morte en Israël, qui ont des valuers de δ11B allent jusqu'à + 59‰. L'eau de mer a une valeur de δ11B mondialement constante de + 39.5‰. Des valeurs de δ11B des solutions naturelles ainsi que des roches et minéraux de différentes origines, publiées jusqu'à présent, sont présentées ici. En outre quelques aspects importants concernant la géochimie des isotopes du bore y compris quelques applications sont exposés.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal JK, Palmer MR, Ragnarsdottir KV (1992) Boron isotopic composition of Icelandic hydrothermal systems. In: 7th International Symposium on Water-Rock Interaction WRI-7, Park City, Utah, USA, 13–18 July 1992, (eds) YK Kharaka and AS Maest, Rotterdam (AA Balkema). Vol. 2: 893–895Google Scholar
  2. Agyei EK, McMullen CC (1968) A study of the isotopic abundance of boron from various sources. Can J Earth Sci 5: 921–927Google Scholar
  3. Bassett RL (1990) A critical evaluation of the available measurements for the stable isotopes of boron. Appl Geochem 85: 541–554Google Scholar
  4. Campbell AC, Palmer MR, Klinkhammer GP, Bowers TS, Edmond JM, Lawrence JR, Casey JF, Thompson G, Humphris S, Rona P, Karson JA (1988) Chemistry of hot springs on the Mid-Atlantic Ridge: TAG and MARK sites. Nature 335: 514–519Google Scholar
  5. Catanzaro EJ, Champion CE, Garner EL, Marinenko G, Sappenfield KM, Shields WR (1970) Boric acid; isotopic and assay standard reference materials. Natl Bur Stand (US) Spec Publ 260-17: 70ppGoogle Scholar
  6. Chaussidon M, Albarède F (1991) Secular δ11B variations of the continental crust: an ion microprobe study. In: European Union of Geosciences EUG VI, Strasbourg, 24–28 March 1991, Terra abstracts, (ed) R Muir Wood, Oxford (Blackwell Scientific Publications Ltd.) Vol. 3: 494Google Scholar
  7. Chaussidon M, Albarède F (1992) Secular boron isotope variations in the continental crust: an ion microprobe study. Earth Planet Sci Lett 108: 229–241Google Scholar
  8. Chaussidon M, Jambon A. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet Sci Lett, submittedGoogle Scholar
  9. Chaussidon M, Libourel G. Boron partitioning in the upper mantle: an experimental and ion microprobe study. Geochim Cosmochim Acta, submittedGoogle Scholar
  10. Christ CL, Harder H (1978) Boron. In: Wedepohl, KH, ed Handbook of Geochemistry. Vol. II/1: 5Google Scholar
  11. Duchateau NL, De Bièvre P (1983) Boron isotopic measurements by thermal ionization mass spectrometry using the negative BO2 ion. Int J Mass Spectrom Ion Processes 54: 289–297Google Scholar
  12. Finley HO, Leuang EE, Jr (1961) Mass spectrometric determination of boron isotopic abundance in the near normal range. USAEC Semiannual Progress Rep NBL-170: 49–66Google Scholar
  13. Finley HO, Eberle AR, Rodden CJ (1962) Isotopic boron composition of certain boron minerals. Geochim Cosmochim Acta 26: 911–914Google Scholar
  14. Gregoire DC (1987) Determination of boron isotope ratios in geological materials by inductively coupled plasma mass spectrometry. Anal Chem 59: 2479–2484Google Scholar
  15. Hemming NG, Hanson GN (1992) Boron isotopic composition in modern marine carbonates. Geochim Cosmochim Acta 56: 537–543CrossRefGoogle Scholar
  16. Hershey JP, Fernandez M, Milne PJ, Millero FJ (1986) The ionization of boric acid in NaCl, Na-Ca-Cl, Na-Mg-Cl solutions at 25°C. Geochim Cosmochim Acta 50: 143–148CrossRefGoogle Scholar
  17. Inghram MG (1946) Isotopic constitution of tungsten, silicon and boron. Phys Rev 70: 653–660Google Scholar
  18. Ishikawa T, Nakamura E (1992) Boron isotope systematics of island arc volcanics: implications for subducted components in the wedge mantle. In: 29th International Geological Congress IGC, Kyoto, Japan, 24 Aug–3 Sept 1992. Vol. 1: 182Google Scholar
  19. Jambon A, Chaussidon M (1993) Boron and δ11B in oceanic basalts an ion microprobe study. In: European Union of Geosciences EUG VII, Strasbourg, 4–8 April 1993, Terra abstracts, (ed) R Muir Wood, Oxford (Blackwell Scientific Publications Ltd.). Vol. 5: 372–373Google Scholar
  20. Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Jpn 50: 158–163Google Scholar
  21. Kanzaki T, Yoshida M, Nomura M, Kakihana H, Ozawa T (1979) Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-jima, Japan. Geochim Cosmochim Acta 43: 1859–1863Google Scholar
  22. Keren R, Gast RG, Bar-Yosef B (1981) pH-dependent boron adsorption by Na-montmorillonite. Soil Sci Soc Am J 45: 45–48Google Scholar
  23. Klötzli US (1992) Negative thermal ionization mass spectrometry: a new approach to boron isotope geochemistry. Chem Geol (Isotope Geosci Sect) 101: 111–122Google Scholar
  24. Leeman WP, Vocke RD, McKibben MA (1990) Boron isotope studies of geothermal fluids. Eos 71: 1686–1687Google Scholar
  25. Leeman WP, Vocke RD, Jr, Beary ES, Paulsen PJ (1991) Precise boron isotopic analysis of aqueous samples: ion exchange extraction and mass spectrometry. Geochim Cosmochim Acta 55: 3901–3907Google Scholar
  26. Leeman WP, Vocke RD, McKibben MA (1992) Boron isotopic fractionation between coexisting vapor and liquid in natural geothermal systems. 7th International Symposium on Water-Rock Interaction WRI-7, Park City, Utah, USA, 13–18 July 1992, (eds) YK Kharaka and AS Maest, Rotterdam (AA Balkema) Vol. 2: 1007–1010Google Scholar
  27. McMullen CC, Cragg CB, Thode HG (1961) Absolute ratios of 11B/10B in Searles Lake borax. Geochim Cosmochim Acta 23: 147–149Google Scholar
  28. Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344: 31–36Google Scholar
  29. Musashi M, Nomura M, Okamoto M, Ossaka T, Oi T, Kakihana H (1988) Regional variation in the boron isotopic composition of hot spring waters from central Japan. Geochim J 22: 205–214Google Scholar
  30. Nakamura E, Ishikawa T, Birck J-L, Allègre C-J (1992) Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex. Chem Geol (Isotope Geosci Sect) 94: 193–204Google Scholar
  31. Nomura M, Kanzaki T, Ozawa T, Okamoto M, Kakihana H (1982) Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs. Geochim Cosmochim Acta 46: 2403–2406Google Scholar
  32. Oi T, Nomura M, Musashi M, Ossaka T, Okamoto M, Kakihana H (1989) Boron isotopic compositions of some boron minerals. Geochim Cosmochim Acta 53: 3189–3195Google Scholar
  33. Palmer MR (1991 a) Boron-isotope systematics of Halmahera arc (Indonesia) lavas: evidence for involvement of the subducted slab. Geology 19: 215–217Google Scholar
  34. Palmer MR (1991 b) Boron isotope systematics of hydrothermal fluids and tourmalines: a synthesis. Chem Geol (Isotope Geosci Sect) 94: 111–121Google Scholar
  35. Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta 51: 2319–2323Google Scholar
  36. Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103: 434–451Google Scholar
  37. Palmer MR, Sturchio NC (1990) The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: a reconnaissance. Geochim Cosmochim Acta 54: 2811–2815Google Scholar
  38. Palmer MR, London D, Morgan VI GB, Babb HA (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: a temperature- and pressure-dependent isotopic system. Chem Geol (Isotope Geosci Sect) 101: 123–129Google Scholar
  39. Ramakumar KL, Parab AR, Khodade PS, Almaula AI, Chitambar SA, Jain HJ (1985) Determination of isotopic composition of boron. Radioanal Nucl Chem Lett 94: 53–62Google Scholar
  40. Schwarcz HP, Agyei EK, McMullen CC (1969) Boron isotopic fractionation during clay adsorption from sea-water. Earth Planet Sci Lett 6: 1–5Google Scholar
  41. Seyfried WE, Jr, Janecky DR, Mottl MJ (1984) Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim Cosmochim Acta 48: 557–569Google Scholar
  42. Shima M (1963) Geochemical study of boron isotopes. Geochim Cosmochim Acta 27: 911–913Google Scholar
  43. Spivack AJ (1986) Boron isotope geochemistry. PhD Thesis. MIT-WHOI, Joint Program in OceanographyGoogle Scholar
  44. Spivack AJ, Edmond JM (1986) Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem 58: 31–35Google Scholar
  45. Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta 51: 1033–1043Google Scholar
  46. Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of the boron isotopes. Geochim Cosmochim Acta 51: 1939–1949Google Scholar
  47. Spivack AJ, Berndt ME, Seyfried WE, Jr (1990) Boron isotope fractionation during supercritical phase separation. Geochim Cosmochim Acta 54: 2337–2339Google Scholar
  48. Spivack AJ, You C-F, Gieskes JM, Rosenbauer R, Bischoff J (1992) Experimental study of B geochemistry: implications for Be-B systematics in subduction zones. In: Eos, Transactions, American Geophysical Union, AGU, Fall Meeting, San Francisco, California, USA, 7–11 Dec 1992, (eds) AF Spilhaus, Jr. et al., Washington (AGU Publications). American Geophysical Union AGU, Fall Meeting: 638Google Scholar
  49. Swihart GH, Moore PB (1989) A reconnaissance of the boron isotopic composition of tourmaline. Geochim Cosmochim Acta 53: 911–916Google Scholar
  50. Swihart GH, Moore PB, Callis EL (1986) Boron isotopic composition of marine and nonmarine evaporite borates. Geochim Cosmochim Acta 50: 1297–1301.Google Scholar
  51. Thode HG, MacNamara J, Lossing FP, Collis CB (1948) Natural variations in isotopic content of boron and its chemical atomic weight. J Am Chem Soc 70: 3008–3011Google Scholar
  52. Thompson G, Melson WG (1970) Boron contents of serpentinites and metabasalts in the oceanic crust: implications for the boron cycle in the oceans. Earth Planet Sci Lett 8: 61–65Google Scholar
  53. Vengosh A (1990) Boron isotope geochemistry in the sedimentary environment. PhD Thesis. Australian National University, Canberra: 184 ppGoogle Scholar
  54. Vengosh A (1992) Boron isotope variations during brine evolution and water-rock interactions. In: 7th International Symposium on Water-Rock Interaction WRI-7, Park City, Utah, USA, 13–18 July 1992, (eds) YK Kharaka and AS Maest, Rotterdam (AA Balkema). Vol. 1: 693–696Google Scholar
  55. Vengosh A, Chivas AR, McCulloch M (1989) Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem Geol (Isotope Geosci Sect) 79: 333–343Google Scholar
  56. Vengosh A, Chivas AR, McCulloch M, Starinsky A, Kolodny Y (1991 a): Boron isotope geochemistry of Australian salt lakes. Geochim Cosmochim Acta 55: 2591–2606Google Scholar
  57. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch M (1991 b) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55: 2901–2910CrossRefGoogle Scholar
  58. Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991 c) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta 55: 1689–1695Google Scholar
  59. Vengosh A, Starinsky A, Kolodny Y, Chivas AR, Raab M (1992) Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate. Geology 20: 799–802Google Scholar
  60. Xiao Y-K, Beary ES, Fassett JD (1988) An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Processes 85: 203–213Google Scholar
  61. Xiao Y-K, Sun D, Wang Y, Oi H, Jin L (1992) Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim Cosmochim Acta 56: 1561–1568Google Scholar
  62. Zeininger H, Heumann KG (1983) Boron isotope ratio measurement by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Phys 48: 377–380Google Scholar
  63. Zuleger E, Erzinger J (1992) Geochemical behaviour of boron and its isotopes in the marine environment. 70 Jahrestagung DMG, Tübingen, 12–20 Sept 1992, Stuttgart (E Schweizerbart'sche Verlagsbuchhandlung)., Bh Eur J Mineral 4: 306Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • S. Barth
    • 1
  1. 1.Institut für Kristallographie und Petrographie, ETHZürichSwitzerland

Personalised recommendations