Applied Microbiology and Biotechnology

, Volume 42, Issue 6, pp 871–877 | Cite as

Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement

  • K. -D. Wittchen
  • F. Meinhardt
Applied Genetics and Regulation Original Paper


An efficient method for gene replacement in Bacillus megaterium was developed and used to inactivate the chromosomal neutral protease gene (nprM) from strain DSM319. A temperature-dependent suicide vector was constructed to allow replacement of the normal chromosomal copy with an altered version of the nprM gene. One mutant B. megaterium MS941 was selected for further characterization. Measurement of extracellular protease activity from strain MS941 indicated the existence of an additional minor extracellular protease in B. megaterium. Inhibitor studies revealed that this minor protease, comprising only 1.4% of the wild-type total extracellular protease activities, is a serine-type enzyme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1522Google Scholar
  2. Bron S, Luxen E, Swart P (1988) Instability of recombinant pUB110 plasmids in Bacillus subtilis: plasmid-encoded stability functions and effects of DNA inserts. Plasmid 19:231–241Google Scholar
  3. Chaloupka J, Severin AI, Sastry KJ, Kucerova H, Strnadova M (1982) Differences in the regulation of exocellular proteinase synthesis during growth and sporogenesis of B. megaterium. Can J Microbiol 28:1214–1218Google Scholar
  4. Chavira R, Burnett TJ, Hagemann JH (1984) Assaying proteinases with Azocoll. Anal Biochem 136:446–445Google Scholar
  5. Debabov VG (1982). The industrial use of Bacilli. In: Dubnau DA (ed) The molecular biology of the Bacilli, Academic Press, New York, pp 331–370Google Scholar
  6. Ehrlich SD (1989) Illegitimate recombination in bacteria. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 799–832Google Scholar
  7. Ehrlich SD, Noirot P, Petit MA, Janniere L, Michel B, Riele H te (1986) Structural instability ofBacillus subtilis plasmids. In: Setlow JK, Hollaender A (eds) Genetic engineering, vol 8. Plenum, New York, pp 71–83Google Scholar
  8. Gärtner D, Geissendörfer M, Hillen W (1988) Expression of Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol 170:3102–3109Google Scholar
  9. Godtfredsen SE (1990) Microbial lipases. In: Fogarty WM, Kelly KT (eds) Microbial enzymes and biotechnology, 2nd edn. Elsevier Applied Science, London, pp 255–274Google Scholar
  10. Horinouchi S, Weisblum B (1982) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide and streptogramin type B antibiotics. J Bacteriol 150:804–814Google Scholar
  11. Jarnagin AS, Ferrari E (1992) Extracellular enzymes: gene regulation and structure function relationship studies. In: Doi R, McGloughlin M (eds) Biology of Bacilli: Applications to industry. Butterworth-Heinemann, Boston, pp 191–219Google Scholar
  12. Kieselburg MK, Weickert M, Vary PS (1984) Analysis of resident and transformant plasmids in Bacillus megaterium. Biotechnology 2:254–259Google Scholar
  13. Kreft J, Bernhard K, Goebel W (1978) Recombinant plasmids capable of replication in Bacillus subtilis and E. coli. Mol Gen Genet 162:59–67Google Scholar
  14. Kühn S, Fortnagel P (1993) Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581. J Gen Microbiol 139:39–47Google Scholar
  15. Lan Wong S, Kawamura F, Doi R (1986) Use of the Bacillus subtilis signal peptide for efficient secretion of TEM β-lactamase during growth. J Bacteriol 168:1005–1009Google Scholar
  16. Meinhardt F, Stahl U, Ebeling W (1989) Highly efficient expression of homologous and heterologous genes in Bacillus megaterium. Appl Microbiol Biotechnol 30:343–350Google Scholar
  17. Meinhardt F, Bußkamp M, Wittchen KD (1994) Cloning and sequencing of the leuC and nprM genes and a putative spoIV gene from Bacillus megaterium DSM319. Appl Microbiol Biotechnol 41:344–351Google Scholar
  18. Millet J, Archer R, Aubert JP (1969) Biochemical and physiological properties of an extracellular protease produced by Bacillus megaterium. Biotechnol Bioeng 11:1233–1246Google Scholar
  19. Morozova IP, Chestukhina GG, Bormatova ME, Gololobov MY, Ivanova NM, Lysogorskaya EN, Filippova IY, Khodova OM, Timokhina EA, Stepanov VM (1993) Isolation and characterization of mettalloproteinase from Bacillus megaterium. Biochem-Russia 58:612–621Google Scholar
  20. Novikov S, Borukhov I, Strongin A (1990) Bacillus amyloliquefaciens α-amylase signal sequence fused in frame with human proinsulin is properly processed by Bacillus subtilis cells. Biochem Biophys Res Commun 169:297–301Google Scholar
  21. Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226Google Scholar
  22. Palva G, Vidgren M, Simonen M, Rintala H, Laamanen P (1990) Nucleotide sequence of the tetracycline resistance gene of pBC16 from Bacillus cereus. Nucleic Acids Res 18:1635Google Scholar
  23. Priest F (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753Google Scholar
  24. Priest F (1989) Products from Bacilli. In: Harwood CF (ed) Handbooks of biotechnology, vol 2. Bacillus, Plenum New York, pp 293–315Google Scholar
  25. Rygus T, Hillen W (1992) Catabolite repression of the xyl operon in Bacillus megaterium. J Bacteriol 174:3049–3055Google Scholar
  26. Sambrook J, Fristch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  27. Sarkar G, Kapelner S, Sommer SS (1990) Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res 18:7465Google Scholar
  28. Saunders C, Schmidt B, Mallonee R, Guyer M (1987) Secretion of human serum albumin from Bacillus subtilis. J Bacteriol 169:2917–2925Google Scholar
  29. Sloma A, Ally A, Ally D, Pero J (1988) Gene encoding a minor extracellular protease in Bacillus subtilis. J Bacteriol 170:5557–5563Google Scholar
  30. Sloma A, Rudolph CF, Rufo GA Jr, Sullivan BJ, Theriault KA, Ally D, Pero J (1990a) Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J Bacteriol 172:1024–1029Google Scholar
  31. Sloma A, Rufo GA Jr, Rudolph CF, Sullivan BJ, Theriault KA, Pero J (1990b) Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J Bacteriol 172:1470–1477. (Erratum 172:5520–5521.)Google Scholar
  32. Sloma A, Rufo GA Jr, Theriault KA, Dwyer M, Wilson SW, Pero J (1991) Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol 173:6889–6895Google Scholar
  33. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  34. Stahl ML, Ferrari E (1984) Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158:411–418Google Scholar
  35. Stahl U, Esser K (1983) Plasmid heterogeneity in various strains of Bacillus megaterium. Eur J Appl Biotechnol 17:248–251Google Scholar
  36. Struhl K, Cameron R, Davis RW (1976) Functional genetic expression of eukaryotic DNA in Escherichia coli. Proc Natl Acad Sci USA 73:1471–1475Google Scholar
  37. Stutzenberger F (1990) Bacterial cellulases. In: Fogarty WF, Kelly KT (eds) Microbial enzymes and biotechnology, 2nd edn. Elsevier Applied Science, London, pp 37–70Google Scholar
  38. Tran L, Wu XC, Wong SL (1991) Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J Bacteriol 173:6364–6372Google Scholar
  39. Vandeyar MA, Zahler SA (1986) Chromosomal insertions of Tn917 in Bacillus subtilis. J Bacteriol 167:530–534Google Scholar
  40. Vary PS (1979) Transduction in Bacillus megaterium. Biochem Biophys Res Commun 88:1119–1124Google Scholar
  41. Vary PS (1992) Development of genetic engineering in Bacillus megaterium: an example of the versatility and potential of industrially important Bacilli. In: Doi R, McGloughlin M (eds) Biology of the Bacilli: applications in industry. Butterworth Heinemann, Boston, San Diego, pp 253–311Google Scholar
  42. Vary PS, Tao YP (1988) Development of genetic methods in Bacillus megaterium. In: Ganesan AT, Hoch JA (eds) Genetics and biotechnology of Bacilli, vol 2. Academic Press, New York, pp 403–407Google Scholar
  43. Vasantha N, Thompson L (1986) Fusion of Pro region of subtilisin to staphylococcal protein A and its secretion of Bacillus subtilis. Gene 49:23–28Google Scholar
  44. Vieira J, Messing J (1982) The pUC-plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268Google Scholar
  45. Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418Google Scholar
  46. Vorobjeva I, Khemel A, Alföldi I (1980) Transformation of Bacillus megaterium protoplasts by plasmid DNA. FEMS Microbiol Lett 7:261–263Google Scholar
  47. Wells JA, Estell DA (1988) Subtilisin-an enzyme designed to be engineered. Trends Biol Sci 13:291–297Google Scholar
  48. Wong SL, Price CW, Goldfarb DS, Doi RH (1984) The subtilisin E gene of Bacillus subtilis is transcribed from a σ37 promotor in vivo. Proc Natl Acad Sci USA 81:1184–1188Google Scholar
  49. Wu XC, Nathoo S, Pang ASH, Carne T, Wong SL (1990) Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J Biol Chem 265:6845–6850Google Scholar
  50. Wu XC, Lee W, Tran L, Wong LS (1991) Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173:4952–4958Google Scholar
  51. Yamataga H, Nakahama K, Suzuki Y, Kakinuma A, Tsukayoshi N, Udaka S (1989) Use of Bacillus— brews for efficient synthesis and secretion of human epidermal growth factor. Proc Natl Acad Sci USA 86:3589–3593Google Scholar
  52. Yang MY, Ferrari E, Henner DJ (1984) Cloning of the neutral protease gene of Bacillus subtilis use of the cloned gene to create an in vitro-derived deletion mutation. J Bacteriol 160:16–21Google Scholar
  53. Youngman P, Perkins JB, Losick R (1983) Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci USA 80:2305–2309Google Scholar
  54. Youngman P, Perkins JB, Sandman K (1985) Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation, American Society for Microbiology, Washington, DCGoogle Scholar
  55. Zukowski MM (1992) Production of commercially valuable products. In In: Doi RH, McGloughlin M (eds) Biology of Bacilli: applications to industry. Butterworth Heinemann, San Diego, Boston, pp 311–337Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. -D. Wittchen
    • 1
  • F. Meinhardt
    • 1
  1. 1.Institut für MikrobiologieWestfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations