Interface Science

, Volume 3, Issue 3, pp 169–193 | Cite as

The mechanics and physics of thin film decohesion and its measurement

  • A. Bagchi
  • A. G. Evans
Featured Article

Abstract

The intent of this review is to utilize the mechanics of thin films in order to define quantitative procedures for predicting interface decohesion motivated by residual stress. The emphasis is on the role of the interface debond energy, especially methods for measuring this parameter in an accurate and reliable manner. Experimental results for metal films on dielectric substrates are reviewed and possible mechanisms are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Drory, M.D. Thouless, and A.G. Evans. On the decohesion of residually stressed thin films, Acta Metall. Mater. 36, 2019–28 (1988).Google Scholar
  2. 2.
    A.G. Evans, M.D. Drory, and M.S. Hu, The cracking and decohesion of thin films. J. Mater. Res. 3, 1043–49 (1988).Google Scholar
  3. 3.
    M.D. Thouless. Cracking and delamination of coatings. J. Vac. Sci. Tech. A9, 2510–15 (1991).Google Scholar
  4. 4.
    P.S. Ho, Chemistry and adhesion of metal/polymer interfaces, Appl. Surf. Sci. 41/42, 559–66 (1989).Google Scholar
  5. 5.
    W.R. La Fontaine, B. Yost, and C.Y. Li, Effect of residual stress and adhesion on the hardness of copper films deposited on silicon, J. Mater. Res. 5, 776–83 (1990).Google Scholar
  6. 6.
    R.W. Hoffman, The mechanical properties of thin consolidated films. Phys. Thin Films 3, 211 (1966).Google Scholar
  7. 7.
    S. Suresh, A.G. Giannakopoulos, and M. Olsson, Elastoplastic analysis of thermal cycling: Layered materials with sharp interfaces. J. Mech. Phys. Solids 42, 979–1018 (1994).Google Scholar
  8. 8.
    Z. Suo. Cracking and debonding of microlaminates, J. Vac. Sci. Technol. A11, 1367–72 (1993).Google Scholar
  9. 9.
    D.S. Campbell, Mechanical properties of thin films, in Handbook of Thin Film Technology, edited by L.I. Maissel and R. Glang (McGraw-Hill, New York, Chapter 12, 1970), pp. 12.3–12.50.Google Scholar
  10. 10.
    K.L. Mittal, Adhesion measurement of thin films, Electrocom. Sci. Technol. 3, 21–42 (1976).Google Scholar
  11. 11.
    P.A. Steinmann and H.I. Hintermann, A review of the mechanical tests for assessment of thin-film adhesion, J. Vac. Sci. Tech. A7, 2267–72 (1989).Google Scholar
  12. 12.
    J.-A. Schweitz, Mechanical characterization of thin films by micromechanical techniques, MRS Bulletin 17, 34–45, (1992).Google Scholar
  13. 13.
    A.G. Evans and J.W. Hutchinson, The thermomechanical integrity of thin films and multilayers, Acta Metall. Mater. 43, 2507–30 (1995).Google Scholar
  14. 14.
    J.W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1992).Google Scholar
  15. 15.
    M.F. Doerner and W.D. Nix, Stresses and deformation processes in thin films on substrates, CRC Crit. Rev. Solid States Mater. Sci. 14, 224–68 (1988).Google Scholar
  16. 16.
    J. Dundurs, Edge-bombed dissimilar orthogonal clastic wedges, J. Appl. Mech. 36, 650–52 (1969).Google Scholar
  17. 17.
    M.L. Williams, The stress around a fault or crack in a dissimilar media. Bull. Seismol. Soc. Am. 49, 199–204 (1959).Google Scholar
  18. 18.
    M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics (Oxford University Press, New York, 1985), p. 145.Google Scholar
  19. 19.
    J.W. Hutchinson, M.E. Mear, and J.R. Rice, Crack paralleling an interface between dissimilar materials, J. Appl. Mech. 54, 828–32 (1987).Google Scholar
  20. 20.
    J.R. Rice, Elastic fracture concepts for interfacial cracks. J. Appl. Mech. 55, 98–103 (1988).Google Scholar
  21. 21.
    J.R. Rice, Z. Suo, and J.-S. Wang, Mechanics and thermodynamics of brittle interfacial failure in bimaterial system, in Metal-Ceramic Interfaces, edited by M. Rühle, A.G. Evans, M.F. Ashby, and J.P. Hirth (Pergamon Press, New York, 1990), pp. 269–94.Google Scholar
  22. 22.
    B.M. Malyshev and R.L. Salganik, The strength of adhesive joints using the theory of cracks. Int. J. Frac. Mech. 5, 114–28 (1965).Google Scholar
  23. 23.
    N.P. O'Dowd, C.F. Shih, and M.G. Stout, Test geometries for measuring interfacial fracture toughness. Int. J. Solids Struct. 29, 471–89 (1992).Google Scholar
  24. 24.
    Z. Suo and J.W. Hutchinsoh, Interface crack between two elastic layers. Int. J. Frac. 43, 1–18 (1990).Google Scholar
  25. 25.
    S. Timoshenko, Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233–55 (1925).Google Scholar
  26. 26.
    A. Bagchi and A.G. Evans, Measurements of the debond energy for thin metallization lines on dielectrics, submitted to Thin Solid Films.Google Scholar
  27. 27.
    O.L. Bower, Methods of Analysis and Solutions of Crack Problems, edited by G.C. Sih (Hoordhoff, Holland, 1973).Google Scholar
  28. 28.
    A.G. Evans and B.J. Dalgleish, The fracture resistance of metalceramic interfaces, Acta Metall. Mater. 40 (Suppl.), S295–306 (1992).Google Scholar
  29. 29.
    J.R. Smith, H. Tao, and D.J. Srolovitz, Metal-ceramic adhesion and the Harris functional, Physi. Rev. Lett. 72, 4021–24 (1994).Google Scholar
  30. 30.
    Z. Suo, C.F. Shih, and A.G. Varias, A theory of cleavage cracking in the presence of plastic flow, Acta Metall. Mater. 41, 1551–57 (1993).Google Scholar
  31. 31.
    G. Elssner, D. Korn, and M. Rühle, The influence of interface impurities on fracture energy of UHV diffusion bonded metalceramic bicrystals. Scripta Metall. Mater. 31, 1037–42 (1994).Google Scholar
  32. 32.
    K.J. Hsia, Z. Suo, and W. Yang, Cleavage due to dislocation confinement in layered materials, J. Mech. Phys. Solids 42, 877–96 (1994).Google Scholar
  33. 33.
    V. Tvergaard and J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids 41, 1119–35 (1993).Google Scholar
  34. 34.
    V. Tvergaard and J.W. Hutchinson, “Toughness of an interface along a thin ductile layer joining elastic solids, Phil. Mag. A70, 641–56 (1994).Google Scholar
  35. 35.
    M.R. Turner and A.G. Evans, Technical Report MECH-250. Division of Applied Sciences, Harvard University (1995).Google Scholar
  36. 36.
    K.L. Mittal, A critical appraisal of the methods for measuring adhesion of electrodeposited coatings, in Properties of Electrodeposits, edited by R. Sard, H. Leidheiser Jr., and F. Ogburn (The Electrochemical Society, New Jersey, Chapter 17, 1975), pp. 273–306.Google Scholar
  37. 37.
    K.L. Mittal, Adhesion measurement: Recent progress, unsolved problems, and prospects, in Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, ASTM STP 640, edited by K.L. Mittal (American Society for Testing and Materials, 1978), pp. 5–17.Google Scholar
  38. 38.
    J. Valli, A review of adhesion test methods for thin hard coatings, J. Vac. Sci. Tech. A4, 3007–14 (1986).Google Scholar
  39. 39.
    P.R. Chalker, S.J. Bull, and D.S. Rickerby, A review of the methods for the evaluation of coating-substrate adhesion. Mat. Sci. Eng. A40, 385–92 (1991).Google Scholar
  40. 40.
    K.-S. Kim and N. Aravas, Elastoplastic analysis of the peel test, Int. J. Solids Struct. 24, 417–35 (1988).Google Scholar
  41. 41.
    K.-S. Kim and J. Kim, Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mat. Tech. 110, 266–73 (1988).Google Scholar
  42. 42.
    T.W. Wu, Microscratch and load relaxation tests for ultrathin films, J. Mater. Res. 6, 407–26 (1991).Google Scholar
  43. 43.
    S.K. Venkatraman, D.L. Kohlstedt, and W.W. Gerberich, Microscratch analysis of the work of adhesion for Pt thin films on NiO. J. Mater. Res. 7, 1126–32 (1992).Google Scholar
  44. 44.
    S.K. Venkatraman, D.L. Kohlstedt, and W.W. Gerberich, Metal-ceramic interfacial fracture resistance using the continuous microscratch technique. Thin Solid Films 223, 269–75 (1993).Google Scholar
  45. 45.
    S.K. Venkatraman, W.W. Gerberichm, and D.L. Kohlstedt, Adhesion in metal-ceramic systems, in Thin Films: Stresses and Mechanical Properties IV, edited by P.H. Townsend, T.P. Weihs, J.E. Sanchez, Jr., and P. Børgesen (Materials Research Society Symposium Proceedings, Pittsburgh, 1993). Vol. 308, pp. 621–26.Google Scholar
  46. 46.
    G.J. Spies, The peeling test on redux-bonded joints. J. Aircraft Engr. 25, 64–70 (1953).Google Scholar
  47. 47.
    W.T. Chen and T.F. Flavin, Mechanics of film adhesion: Elastic and clastic-plastic behavior. IBM J. Res. Develop. 116, 203–13 (1972).Google Scholar
  48. 48.
    S. Kim, The role of plastic package adhesion in IC performance, in 1991 Proceedings: 41 st Electronic Components and Technology Conference, IEEE, New York, 1991, pp. 750–58.Google Scholar
  49. 49.
    K.-S. Kim and N. Aravas, Elastoplastic analysis of the peel test, Int. J. Solids Struct. 24, 417–35 (1988).Google Scholar
  50. 50.
    K.-S. Kim, Mechanics of peel test for thin film adhesion, in Adhesion in Solids, edited by D.M. Mattox, J.E.E. Baglin, R.J. Gottschall, and C.D. Batich (Materials Research Society Symposium Proceedings, Pittsburgh, 1988): Vol. 119, pp. 31–41.Google Scholar
  51. 51.
    N. Aravas, K.-S. Kim, and M.J. Loukis, On the mechanics of adhesion testing of flexible films, Mat. Sci. Eng. A107, 159–68 (1989).Google Scholar
  52. 52.
    M.G. Allen and S.D. Senturia, Analysis of critical debonding pressures of stressed thin films in the blister test, J. Adhesion 25, 303–15 (1988).Google Scholar
  53. 53.
    M.G. Allen and S.D. Senturia, Application of the island blister test for thin film adhesion measurement, J. Adhesion 29, 219–31 (1989).Google Scholar
  54. 54.
    H.M. Jensen, The blister test for interface toughness measurement, Engr. Prac. Mech. 40, 475–86 (1991).Google Scholar
  55. 55.
    H.M. Jensen and M.D. Thouless, Effect of residual stresses in the blister test, Int. J. Solids Struct. 30, 779–95 (1993).Google Scholar
  56. 56.
    H.-S. Jeong and R.C. White, Variational principle of thin film adhesion, J. Vac. Sci. Tech. A11, 1373–76 (1993).Google Scholar
  57. 57.
    Y.Z. Chu, H.-S. Jeong, R.C. White, and C.J. Durning, Characterization of adhesion in thin-film materials by the blister test, in Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems, edited by A.P. Jardine, G.C. Johnson, A. Crowson, and M. Allen (Materials Research Society Symposium Proceedings, Pittsburgh, 1992), Vol. 276, pp. 209–20.Google Scholar
  58. 58.
    A.G. Evans and M.S. Hu, The cracking and decohesion of thin films on ductile substrates. Acta Metall. Mater. 37, 917–25 (1989).Google Scholar
  59. 59.
    A. Bagchi, G.E. Lucas, Z. Suo, and A.G. Evans, A new procedure for measuring the decohesion energy of thin duetile films on substrates. J. Mater. Res. 9, 1734–41 (1994).Google Scholar
  60. 60.
    D.K. Leung, M.Y. He, and A.G. Evans, The cracking resistance of nanoscale layers and films, J. Mater. Res. 10, 1693–99 (1995).Google Scholar
  61. 61.
    J.S. Stolken, University of California, Santa Barbara (private communication).Google Scholar
  62. 62.
    D. Lipkin and D.R. Clarke, University of California, Santa Barbara (private communication).Google Scholar
  63. 63.
    A. Bagchi, Ph.D. Thesis, University of California, Santa Barbara (1994).Google Scholar
  64. 64.
    R.M. Cannon, R.M. Fisher, and A.G. Evans, in Thin Films—Interfaces and Phenomena, edited by R.J. Nemanich, P.S. Ho, and S.S. Lau (Materials Research Society Symposium Proceedings, 1986), Vol. 54, pp. 799–804.Google Scholar
  65. 65.
    W.D. Nix, Mechanical properties of thin films, Met. Trans. 20A, 2217–45 (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Bagchi
    • 1
  • A. G. Evans
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations