Experiments in Fluids

, Volume 15, Issue 2, pp 133–146 | Cite as

Particle tracking velocimetry in three-dimensional flows

Part 1. Photogrammetric determination of particle coordinates
  • H. G. Maas
  • A. Gruen
  • D. Papantoniou


Particle Tracking Velocimetry (PTV) is a well-known technique for the determination of velocity vectors within an observation volume. However, for a long time it has rarely been applied because of the intensive effort necessary to measure coordinates of a large number of flow marker particles in many images. With today's imaging hardware in combination with the methods of digital image processing and digital photogrammetry, however, new possibilities have arisen for the design of completely automatic PTV systems. A powerful 3D PTV has been developed in a cooperation of the Institute of Geodesy and Photogrammetry with the Institute of Hydromechanics and Water Resources Management at the Swiss Federal Institute of Technology. In this paper hardware components for 3D PTV systems wil be discussed, and a strict mathematical model of photogrammetric 3D coordinate determination, taking into account the different refractive indices in the optical path, will be presented. The system described is capable of determining coordinate sets of some 1000 particles in a flow field at a time resolution of 25 datasets per second and almost arbitrary sequence length completely automatically after an initialization by an operator. The strict mathematical modelling of the measurement geometry, together with a thorough calibration of the system provide for a coordinate accuracy of typically 0.06 mm in X, Y and 0.18 mm in Z (depth coordinate) in a volume of 200 × 160 × 50 mm3.


Velocimetry Water Resource Management Digital Image Processing Particle Track Velocimetry Swiss Federal Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamczyk, A.; Rimai, L. 1988: Reconstruction of a 3-Dimensional Flow Field from Orthogonal Views of Seed Track Video Images. Exp Fluids 6, 380–386Google Scholar
  2. Adrian, R., 1986: Multi-Point Optical Measurements of Simultaneous Vectors in Insteady Flow — a Review. Int. J Heat and Fluid Flow 7, 127–145Google Scholar
  3. Albertz, J.; Kreiling, W. 1989: Photogrammetrisches Taschenbuch. Wichmann Verlag, KarlsruheGoogle Scholar
  4. Beyer, H., 1987: Some Aspects on the Geometric Calibration of CCD-Cameras. Proceedings Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Schweiz, 2–4 Juni, S. 68–81Google Scholar
  5. Brown, D., 1971: Close-Range Camera Calibration. Photogrammetric Eng. 37, No. 8Google Scholar
  6. Chang, T.; Watson, A.; Tatterson, G. 1985a: Image Processing of Particle Motions as Applied to Mixing and Turbulence Flow-1. Chem. Eng. Sci. 40, 269–275Google Scholar
  7. Chiu, W.; Rib, L. 1956: The Rate of Dissipation of Energy and the Energy Spectrum in a Low Speed Turbulent Jet. Transactions of the Americal Geophysical Union, Vol. 37/1Google Scholar
  8. El-Hakim, S. F. 1986; Real-Time Image Metrology with CCD Cameras. Photogrammetric Engineering and Remote Sensing, 52, 1757–1766Google Scholar
  9. Gruen, A. 1978: Accuracy, Reliability and Statistics in Close-Range Photogrammetry. International Archives of Photogrammetry, Vol. 22, Part VGoogle Scholar
  10. Gruen, A.; Baltsavias, E. 1988: Geometrically Constrained Multiphoto Matching. Photogrammetric Engineering 54, 633–641Google Scholar
  11. Hoehle, J. 1971: Zur Theorie und Praxis der Unterwasser-Photogrammetrie. Schriften der DGK, Reihe C, Heft 163Google Scholar
  12. Hough, P. 1962: Method and Means for Recognizing Complex Patterns. U. S. Patent 3069654Google Scholar
  13. Jacobi, O. 1980: Photogrammetric Tracking of a Moving Particle in Running Water. International Archives of Photogrammetry, Vol. XXIII, pp. 369–374Google Scholar
  14. Kasagi, N.; Nishino, K. 1990: Probing Turbulence with Three-Dimensional Particle Tracking Velocimetry. Proceedings International Symposium on Engineering Turbulence — Methods and Measurements, Dubrovnik, September 24–28Google Scholar
  15. Kearney, J. K. 1991: Trinocular Correspondence for Particles and Streaks. Dept. of Computer Science, The University of Iowa, Technical Report 91-01Google Scholar
  16. Koch, K. R. 1980: Parameterschätzung und Hypothesentests in linearen Modellen. Dümmler Verlag, BonnGoogle Scholar
  17. Kotowski, R. 1988: Phototriangulation in Multi-Media-Photogrammetry. International Archives of Photogrammetry and Remote Sensing, Vol. XXVIIGoogle Scholar
  18. Koyabashi, T.; Sata, T.; Sekimoto, K. 1989: Velocity Measurement of Three-dimensional Flow around Rotating Parallel Disks by Digital Image Processing. Flow Visualization 1989Google Scholar
  19. Kuhl, F.; Giardina, Ch. 1982: Elliptic Fourier Features of a Closed Contour. Computer Graphics and Image Processing 18, 236–258Google Scholar
  20. Maas, H.-G. 1990: Digital Photogrammetry for Determination of Tracer Particle Coordinates in Turbulent Flow Research. ISPRS Com. V Symposium Zürich, 3.–7.9. 1990, published in SPIE Proceedings Series Vol. 1395, Part IGoogle Scholar
  21. Maas, H.-G. 1992a: Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik. Ph.D. Thesis No. 9665, ETH ZurichGoogle Scholar
  22. Maas, H.-G. 1992b: Complexity analysis for the determination of image correspondences in dense spatial target fields. International Archives of Photogrammetry and Remote Sensing, Vol. XXIXGoogle Scholar
  23. Maas, H.-G. 1992c: High-Speed Solid State Camera Systems for Digital Photogrammetry. International Archives of Photogrammetry and Remote Sensing, Vol. XXIXGoogle Scholar
  24. Malik, N.; Dracos, T.; Papantoniou, D.; Maas, H.-G. 1993: Particle Tracking Velocimetry in Three-dimensional Turbulent Flows — Part II: Particle Tracking and Lagrangian Trajectories. Exp. Fluids, accepted for publicationGoogle Scholar
  25. Meid, A. 1991: Wissensgestützte digitale Bildkoordinatenmessung in aberrationsbehafteten Messbildern. Ph.D. Thesis University of BonnGoogle Scholar
  26. Nishino, K.; Kasagi, N. 1989: Turbulence Statistics in a Two-Dimensional Channel Flow Using a Three-Dimensional Particle Tracking Velocimeter. Proceedings on the Seventh Symposium on Turbulent Sheer Flows, Stanford University, August 21–23Google Scholar
  27. Nishino, K.; Kasagi, N.; Hirata, M. 1989: Three-Dimensional Particle Tracking Velocimetry Based on Automated Digital Image Processing. Journal of Fluid Engineering, Vol. III, pp. 384–391CrossRefGoogle Scholar
  28. Ogniewicz, R.; Kübier, O. 1989: Lage- und Skalierungsinvariante Skelette zur Robusten Beschreibung und Erkennung binärer Formen. Mustererkennung 1989, Springer VerlagGoogle Scholar
  29. Okamoto, A.; Höhle, J. 1972: Allgemeines analytisches Orientierungsverfahren in der Zwei- und Mehrmedien-Photogrammetrie und seine Erprobung. Bildmessung und Luftbildwesen 2/1972, 3/1972Google Scholar
  30. Papantoniou, D.; Dracos, T. 1990a: Analyzing 3-D Turbulent Motions in Open Channel Flow by Use of Stereoscopy and Particle Tracking. In: Advances in Turbulence 2, Editors H.-H. Hernholz, H. E. Fiedler, Springer Verlag, HeidelbergGoogle Scholar
  31. Papantoniou, D.; Dracos, T. 1990b: Lagrangian Statistics in Open Channel Flow by 3-D Particle Tracking Velocimetry. In: Eng. Turb. Model. Expt. ElsevierGoogle Scholar
  32. Papantoniou, D.; Maas, H.-G. 1990: Recent Advances in 3-D Particle Tracking Velocimetry. Proceedings 5th International Symposium on the Application of Laser Techniques in Fluid Mechanics, Lisbon, July 9–12Google Scholar
  33. Sata, Y.; Nishino, K.; Kasagi, N. 1989: Whole Field Measurement of Turbulent Flows Using a Three-Dimensional Particle Tracking Velocimeter. 5th International Symposium on Flow Visualization, Prague, August 21–25Google Scholar
  34. Sheu, Y.; Chang, T.; Tatterson, G. 1982: A Three-Dimensional Measurement Technique for Turbulent Flows. Chem. Eng. Commun. 17, 67–83Google Scholar
  35. Slama, C. 1980 (Ed.): Manual of Photogrammetry. American Society of Photogrammetry, Falls Church, VirginiaGoogle Scholar
  36. Teh, Ch.; Chin, R. 1988: On Image Analysis by the Method of Moments. IEEE PAMI, Vol. 10, No. 6, pp. 496–513Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H. G. Maas
    • 1
  • A. Gruen
    • 1
  • D. Papantoniou
    • 1
  1. 1.Swiss Federal Institute of Technology, ETH-HoenggerbergZürichSwitzerland

Personalised recommendations