Journal of Comparative Physiology A

, Volume 170, Issue 1, pp 23–40

The spectral input systems of hymenopteran insects and their receptor-based colour vision

  • Dagmar Peitsch
  • Andrea Fietz
  • Horst Hertel
  • John de Souza
  • Dora Fix Ventura
  • Randolf Menzel
Article

Summary

Spectral sensitivity functions S(λ) of single photoreceptor cells in 43 different hymenopteran species were measured intracellularly with the fast spectral scan method. The distribution of maximal sensitivity values (λmax) shows 3 major peaks at 340 nm, 430 nm and 535 nm and a small peak at 600 nm. Predictions about the colour vision systems of the different hymenopteran species are derived from the spectral sensitivities by application of a receptor model of colour vision and a model of two colour opponent channels. Most of the species have a trichromatic colour vision system. Although the S(λ) functions are quite similar, the predicted colour discriminability curves differ in their relative height of best discriminability in the UV-blue or bluegreen area of the spectrum, indicating that relatively small differences in the S(λ) functions may have considerable effects on colour discriminability. Four of the hymenopteran insects tested contain an additional R-receptor with maximal sensitivity around 600 nm. The R-receptor of the solitary bee Callonychium petuniae is based on a pigment (P596) with a long λmax, whereas in the sawfly Tenthredo campestris the G-receptor appears to act as filter to a pigment (P570), shifting its λmax value to a longer wavelength and narrowing its bandwidth. Evolutionary and life history constraints (e.g. phylogenetic relatedness, social or solitary life, general or specialized feeding behaviour) appear to have no effect on the S(λ) functions. The only effect is found in UV receptors, for which λmax values at longer wavelengths are found in bees flying predominantly within the forest.

Key words

Photoreceptors Spectral sensitivity Colour vision Hymenopterans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum H, Zwehl V von (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384Google Scholar
  2. Backhaus W (1991) Color opponent coding in the visual system of the honey bee. Vision Res 31:1381–1397Google Scholar
  3. Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honeybee. Biol Cybern 55:321–331Google Scholar
  4. Backhaus W, Menzel R, Kreiβl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56:293–304Google Scholar
  5. Barlow HB (1982) What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vision Res 22:635–643Google Scholar
  6. Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127Google Scholar
  7. Bowmaker JK (1983) Trichromatic colour vision: why only three receptor channels. Trends Neurosci 6:43–56Google Scholar
  8. Buchsbaum G, Gottschalk A (1983) Trichromacy, opponent colour coding and optimum colour information transmission in the retina. Proc R Soc Lond B 220:89–113Google Scholar
  9. Chinery M (1984) Insekten Mitteleuropas, 3. Auflage. Paul Parey, HamburgGoogle Scholar
  10. Chittka L, Beier W, Hertel H, Steinman E, Menzel R (1990) Opponent color coding as a universal mechanism in hymenopteran insect vision. In: Elsner N, Roth G (eds) Brain — perception cognition. Georg Thieme, Stuttgart, p 194Google Scholar
  11. Cure IR, Wittmann D (1990) Callonychium petuniae, a new panur gine bee species (Apoidea, Andrenidae), oligolectic on Petunia (Solanaceae). Stud Neurotrop Fauna Environ 25:153–156Google Scholar
  12. Dartnall HJA (1953) The interpretation of spectral sensitivity curves. Br Med Bull 9:24–30Google Scholar
  13. Ebrey TG, Honig B (1977) New wavelength dependent visual pigments' nomograms. Vision Res 17:147–151Google Scholar
  14. Gribakin FG (1988) Photoreceptor optics of the honeybee and its eye colour mutants: the effect of screening pigments on the long-wave subsystem of colour vision. J Comp Physiol A 164:123–140Google Scholar
  15. Kirschfeld K (1974) The absolute sensitivities of lens and compound eyes. Z Naturforsch 29:592–596Google Scholar
  16. Kirschfeld K (1986) Activation of visual pigment: chromophore structure and function. In: Stieve H (ed) The molecular mechanism of photoreception (Dahlem Konferenzen 1986). Springer, Berlin Heidelberg New York, pp 31–49Google Scholar
  17. Langer H, Schlecht P, Schwemer J (1982) Microspectrophotometric investigation of insect visual pigments. In: Packer L (ed) Methods of enzymology. Biomembranes, vol 81, part H. Academic Press, New York, pp 729–741Google Scholar
  18. Lythgoe JN (1972) The adaptation of visual pigments to the photic environment. In: Dartnall HJ (ed) Photochemistry of vision (Handbook of sensory physiology, vol. VII/1). Springer, Berlin Heidelberg New York, pp 567–624Google Scholar
  19. Maximov VV (1988) An approximation of visual absorption spectra. Sensornye Systemy 2:3–8Google Scholar
  20. Meinertzhagen IA, Menzel R, Kahle G (1983) The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rubicundulum. J Comp Physiol 151:295–310Google Scholar
  21. Menzel JG, Wunderer H, Stavenga DG (1991) Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue Cell 23:525–535Google Scholar
  22. Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Invertebrate photoreceptors (Handbook of sensory physiology, vol. VII/6A). Springer, Berlin Heidelberg New York, pp 503–580Google Scholar
  23. Menzel R, Backhaus W (1989a) Color vision in insects. In: Gouras P (ed) Vision and visual dysfunction, vol. VII. Perception of color.MacMillan Press, Houndsmills, pp 262–293Google Scholar
  24. Menzel R, Backhaus W (1989b) Color vision in honey bee: phenomena and physiological mechanisms. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 281–297Google Scholar
  25. Menzel R, Ventura DF, Hertel H, Souza JM de, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J Comp Physiol A 158:165–177Google Scholar
  26. Menzel R, Backhaus W, Chittka L, Hoffmann M (1988) Honey bee drones are trichromates. In: Elsner N, Barth FG (eds) Sense organs. Thieme, Stuttgart, p 217Google Scholar
  27. Peitsch D, Backhaus W, Wittmann D, Fix Ventura D, Menzel R (in press) Tetrachromatic colour vision in hymenopterans. Verh Deutsh Zool GesGoogle Scholar
  28. Praagh JP van, Ribi WA, Wehrhahn C, Wittmann D (1980) Drone bees fixate the queen with the dorsal frontal part of their compound eyes. J Comp Physiol 136:263–266Google Scholar
  29. Ribi WA (1978) Colour receptors in the eye of the digger wasp, Sphex cognatus Smith:evaluation by selective adaptation. Cell Tissue Res 195:471–483Google Scholar
  30. Shannon CE, Weaver W (1949/1963) The mathematical theory of communication. Univ. Illinois Press, Urbana (Ill)Google Scholar
  31. Shaw SR (1969) Interreceptor coupling in ommatidia of drone honeybee and locust compound eye. Vision Res 9:999–1029Google Scholar
  32. Smith WC, Goldsmith TH (1990) Phyletic aspects of the distribution of 3-hydroxyretinal in the class Insecta. J Mol Evol 30:72–84Google Scholar
  33. Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135Google Scholar
  34. Vogt K (1989) Distribution of insect visual chromophores: functional and phylogenetic aspects. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 134–151Google Scholar
  35. Wald G, Brown PK (1965) Human color vision and color blindness. Cold Spring Harbor Symp Quant Biol 30:345–362Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Dagmar Peitsch
    • 1
  • Andrea Fietz
    • 1
  • Horst Hertel
    • 2
  • John de Souza
    • 3
  • Dora Fix Ventura
    • 3
  • Randolf Menzel
    • 1
  1. 1.Institut für Neurobiologie, Freie Universität BerlinBerlinFRG
  2. 2.Bundesanstalt für MaterialprüfungBerlinFRG
  3. 3.Universidade de São Paulo, Instituto de PsicologicaSão Paulo — SPBrazil

Personalised recommendations