Mineralium Deposita

, Volume 25, Issue 3, pp 205–212 | Cite as

Solubility of tin, tungsten and molybdenum oxides in felsic magmas

  • M. Štemprok


Saturation versus undersaturation of granitic melts in tin, tungsten and molybdenum oxides is discussed on the basis of experimental data. Results of dry and hydrothermal experiments are evaluated under the assumption of ideal solubility of Sn, W and Mo oxides in granitic melts. A conservative interpretation arrives at concentration levels of ≥ 1000 ppm SnO2, WO3 and MoO3 respectively, considered as the maximum solubility of these components in granitic melts at 750°C-800 °C. Such values are never reached in natural granites unaffected by hydrothermal alteration and therefore even highly evolved granites are expected to be undersaturated in these metals. Consequently cassiterite and scheelite are neither common liquidus minerals of ore-bearing granites nor restite minerals from partial melting events.


Tungsten Molybdenum Mineral Resource Concentration Level Partial Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barsukov, V.L., Durasova, N.A., Ryabchikov, I.D., Khramov, D.A., Kravtsova, R.P.: Peculiarities of the behaviour of tin during the liquid immiscibility of alumosilicate melts. Geokhimiya 2:189–192 (1983) (in Russian)Google Scholar
  2. Candela, P.A., Holland, H.D.: The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim. Cosmochim. Acta 48:373–380 (1984)Google Scholar
  3. Denbigh, K.: The principles of chemical equilibrium. Cambridge University Press: 491 pp. (1963)Google Scholar
  4. Dietzel, A.: Strukturchemie des Glases. Die Naturwissenschaften 29, 36/37:537–547 (1941)Google Scholar
  5. Durasova, N.A., Ryabchikov, I.D., Barsukov, V.L.: Oxidation-reduction potential and the behaviour of tin in magmatic systems. Geol. rud. Mestorozh. 1:5–11 (1986) (in Russian)Google Scholar
  6. Epel'baum, M.B.: Methodological peculiarities of experiments in fluidmagmatic systems. Geokhimiya 5:748–755 (1988) (in Russian)Google Scholar
  7. Holland, H.D.: Granites, solutions and base metal deposits. Econ. Geol. 67:281–301 (1972)Google Scholar
  8. Khitarov, N.I., Malinin, S.D., Lebedev, E.B. et al.: The distribution of Zn, Cu, Pb and Mo between fluid phase and silicate melt of granitic compositions. Geokhimiya 8:1094–1107 (1982) (in Russian)Google Scholar
  9. Kirillin, V.A., Shchedrin, A.E.: Thermodynamics of solutions. Gosenergoizdat, Moscow: 273 pp. (1956) (in Russian)Google Scholar
  10. Kovalenko, V.L., Kovalenko, N.I.: Ongonites — subvolcanic analogues of rare metal lithium-fluorine granites. Joint Soviet-Mongolian Scientific Research Geol. Expedition, Transaction 15, Publishing House, Moscow: 128 pp. (1976) (in Russian)Google Scholar
  11. Lehmann, B., Khositanont, S., Mahawat, C.: Tin-bearing and tin-barren granites in Central Thailand. Extended Abst. Fifth International Symposium on tin-tungsten granites in Southeast Asia and the Western Pacific. IGCP Project 220, Shimane University, Matsue, Japan: 82–85 (1988)Google Scholar
  12. Levashev, G.B.: Magmatogene geochemistry of tin and tungsten. Izd. Nauka, Moscow: 144 pp. (1978) (in Russian)Google Scholar
  13. Liu Yimao, Yang Qishun, Zhu Yunjie, Jiang Qingsong: Tungsten abundances and its evolution in granitoid rocks of South China. Tungsten Geology Symposium, Jiangxe, China, ES CAP/RMRDC, Bandung, Indonesia: 349–357 (1982)Google Scholar
  14. Manning, D.A.C.: Volatile control of tungsten partitioning in granitic melt-vapour systems. Trans. Inst. Min. Metall. (Sect. B: Appl. earth. sci.) 93:B185-B189 (1984)Google Scholar
  15. Manning, D.A.C., Henderson, P.: The behaviour of tungsten in granitic melt vapor systems. Contrib. Mineral. Petrology 86:286–293 (1984)Google Scholar
  16. Mysen, B.O.: Magmatic silicate melts: Relations between bulk composition, structure and properties. Magmatic Processes: Physico-chemical Principles. The Geochemical Society, Spec. Publ. No 1:375–399 (1987)Google Scholar
  17. Nekrasov, I.Ya.: Tin in magmatic and postmagmatic processes. Akad. Nauk SSR, Izd. Nauka, Moscow: 238 pp. (1984) (in Russian)Google Scholar
  18. Orlova, G.P., Lapin, A.A., Ryabchikov, I.D.: Experimental study of equilibria in the system scheelite-granite-fluid under parameters of hypoabyssal magmatism. Geol. rud. Mestorozh. 4:107–110 (1987) (in Russian)Google Scholar
  19. Rawson, H.: Inorganic glass-forming systems. London and New York, Academic press (1967)Google Scholar
  20. Ryabchikov, I.D., Durasova, N.A., Barsukov, V.L., Laputina, I.P., Efimov, A.S.: Role of volatiles for the mobilization of tin from granitic magmas. Metallization Associated with Acid Magmatism 3 (M. Štemprok, L. Burnol, G. Tischendorf ed., Geol. Survey, Prague) (1978a)Google Scholar
  21. Ryabchikov, I.D., Durasova, N.A., Barsukov, V.L., Efimov, A.S.: Oxidation-reduction potential as factor of an ore-bearing capacity of acid magmas. Geokhimiya 6:832–834 (1978b) (in Russian)Google Scholar
  22. Ryabchikov, I. D., Reklarskii, V. I., Kudrin, A. V.: Mobilization of molybdenum by magmatic fluids in the course of crystallization of granitic melts. Geokhimiya 8:1243–1246 (1981) (in Russian)Google Scholar
  23. Salova, T.P., Orlova, G.P., Kravchuk, I.F., Epel'baum, M.B., Ryabchikov, I.D., Malinin, S.D.: On the experimental determination of the distribution coefficients of molybdenum between silicate melt and aqueous water-salt fluids. Geokhimiya 2:267–273 (1989) (in Russian)Google Scholar
  24. Schairer, J.F.: The alkali-feldspar join in the system NaAlSiO4- KAlSiO4-SiO2. J. Geol. 58:512–517 (1950)Google Scholar
  25. Sitek, J., Štemprok, M., Voldán, J., Čičáková, O.: Mössbauerova Spektra žulových skel obsahujících cín. Silikáty 25:243–249 (1981)Google Scholar
  26. Štemprok, M.: Tin-fluorine relationship in ore-bearing assemblage. Metallization associated with acid magmatism, Edited by A.M. Evans. John Wiley & Sons: 321–338 (1982)Google Scholar
  27. Štemprok, M.: Alkaline trend in the differentiation of tin-bearing granites. Proceedings of 6th IAGOD Symposium, Stuttgart, Schweizerbartsche Verlagsbuchhandlung: 449–455 (1984)Google Scholar
  28. Štemprok, M.: The behaviour of tin, tungsten and molybdenum in felsic magmas. Abstracts of the 28th International Geol. Congress 3:174–175 Washington D.C., USA (1989)Google Scholar
  29. Štemprok, M., Škvor, P.: Composition of tin-bearing granites from the Krušné hory metallogenetic province of Czechoslovakia. Sbor. geol. Věd, Iožisk. Geol. 16:7–87 (1974)Google Scholar
  30. Štemprok, M., Voldán, J.: Homogenní skla v systémech Na2O-SiO2-WO3 und Na2O-SiO2-MoO3. Silikáty 18:19–30 (1974)Google Scholar
  31. Štemprok, M., Voldán, J.: Rozpustnost SnO2 v sodnokřemičitých sklech. Silikáty 19, 3:211–222 (1975)Google Scholar
  32. Štemprok, M., Voldán, J.: Solubility of tin dioxide in dry sodium rich granite melts. Proceedings of the XI. General Meeting of IMA: 125–133 Novosibirsk 4–10. Sept. 1970. Izd. Nauka, Leningrad (1978)Google Scholar
  33. Štemprok, M., Voldán, J.: Solubility of tungstic oxide in granite melts. Věst. Ústř. Úst. geol. 57, 6:329–340 (1982)Google Scholar
  34. Štemprok, M., Voldán, J.: Solubility of molybdenum oxide in granite melts. Věst. Ústř. Úst. geol. 58, 2:79–89 (1983)Google Scholar
  35. Tacker, R.C., Candela, P.A.: Partitioning of molybdenum between magnetite and melt. A preliminary experimental study of Martitioning of ore metals between silicic magmas and crystalline phases. Econ. Geol. 82, 7:1827–1838 (1987)Google Scholar
  36. Tchekhmir, A.S. (1986): Reference extracted from Salova et al. (1989)Google Scholar
  37. Tischendorf, G.: Geochemical and petrographic characteristics of silicic rocks associated with rare-element mineralization. Metallization Associated with Acid Magmatism 2:41–96 (M. Štemprok, G. Tischendorf, L. Burnol, eds., Geol. Survey, Prague) (1977)Google Scholar
  38. Tuttle, O.F., Bowen, N.L.: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Mem. Geol. Soc. Amer. 74:1–153 (1958)Google Scholar
  39. Uzkut, I.: Zur Geochemie des Molybdäns. Dissertation Bergakademie Clausthal (1973)Google Scholar
  40. Vinogradov, A.P.: Average contents of chemical elements in the main types of igneous rocks of the Earth's crust. Geokhimiya 3:555–571 (1962) (in Russian)Google Scholar
  41. Watson, E.B.: Zircon saturation in felsic liquids: Experimental results and application to trace element geochemistry. Contrib. Mineral. Petrol. 70:407–419 (1979)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Štemprok
    • 1
  1. 1.Geological SurveyPragueCzechoslovakia

Personalised recommendations