Experiments in Fluids

, Volume 11, Issue 2–3, pp 175–185 | Cite as

A planar Mie scattering technique for visualizing supersonic mixing flows

  • N. T. Clemens
  • M. G. Mungal


A planar Mie scattering technique is described which allows for the direct visualization of fluid mixing in supersonic flows. The mixed fluid is visualized by laser light sheet scattering from small alcohol droplets which condense as a result of the mixing of a vapor laden subsonic stream with a cold supersonic stream. Issues related to the formation, growth and size of the droplets are addressed. The technique reveals details of the turbulent structure which are masked by the spatial integration of schlieren and shadowgraph methods. Comparative visualizations using the vapor screen method to uniformly mark the high-speed fluid are also shown.


Alcohol Supersonic Flow Direct Visualization Turbulent Structure Light Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariessohn, P. C.; Self, S. A.; Eustis, R. H. 1980: Two-wavelength laser transmissometer for measurements of the mean size and concentration of coal ash droplets in combustion flows. Applied Optics 19(22), 3775–3781Google Scholar
  2. Batt, R. G. 1977: Turbulent mixing of passive and chemically reacting species in a low-speed shear layer. J. Fluid Mech. 82, 53–95Google Scholar
  3. Bohren, C. F.; Huffman, D. R. 1983: Absorption and scattering of light by small particles. New York: John WileyGoogle Scholar
  4. Bonnet, J. P.; Chaput, E. 1986: Large-scale structures visualization in a high Reynolds number turbulent flat-plate wake at supersonic speed. Exp. Fluids 4, 350–356Google Scholar
  5. Breidenthal, R. E. 1981: Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1–24Google Scholar
  6. Broadwell, J. E.; Mungal, M. G. 1988: Molecular mixing and chemical reactions in turbulent shear layers. 22nd International Symposium on Combustion/The Combustion Institute, 579–587Google Scholar
  7. Chen, L.-D.; Roquemore, W. M. 1986: Visualization of jet flames. Comb. and Flame 66, 81–86Google Scholar
  8. Chinzei, N.; Masuya, G.; Komuro, T.; Murakami, A.; Kudou, K. 1986: Spreading of two-stream supersonic mixing layers. Phys. Fluids 29(5), 1345–1347Google Scholar
  9. Clemens, N. T.; Mungal, G. M.; Berger, T. E.; Vandsburger, U. 1990: Visualizations of the structure of the turbulent mixing layer under compressible conditions. AIAA paper 90-0500, 28th Aerospace Science Meeting, Reno, NVGoogle Scholar
  10. Clemens, N. T.; Mungal, M. G. 1990: Two- and three-dimensional effects in the supersonic mixing layer. AIAA-90-1978, 26th Joint Propulsion Conference, Orlando, FLGoogle Scholar
  11. Clumpner, J. A. 1971: Light scattering from ethyl alcohol droplets fromed by homogeneous nucleation. J. Chemical Physics 55, 5042Google Scholar
  12. Davies, C. N. (Ed.) 1966: Aerosol Science. London: Academic Press, p. 52Google Scholar
  13. Dibble, R. W.; Barlow, R. S.; Mungal, M. G.; Lyons, K.; Yip, B.; Long, M. B. 1989: Visualization of supersonic flows with planar laser Rayleigh scattering. Sandia Report SAND89-8401Google Scholar
  14. Dimotakis, P. E. 1986: Two-dimensional shear-layer entrainment. AIAA J. 24, 1791–1796Google Scholar
  15. Dobbins, R. A.; Jizmagian, G. S. 1966: Particle size measurements based on use of mean scattering cross sections. J. Opt. Soc. Am. 56, 1351Google Scholar
  16. Durbin, E. J. 1951: Optical methods involving light scattering for measuring size and concentration of condensation particles in supercooled hypersonic flow. NACA Tech. Note 2441Google Scholar
  17. Fourguette, D. C.; Mungal, M. G.; Dibble, R. W. 1990: Time evolution of the shear layer of a supersonic axisymmetric jet at matched conditions. AIAA paper 90-0508, 28th Aerospace Science Meeting, Reno, NV (also to appear in AIAA Jr. 1991)Google Scholar
  18. Freymuth, P.; Bank, W.; Palmer, M. 1985: Use of titanium tetrachloride for visualization of accelerating flow around airfoils, in flow visualization III. Yang, W. J. (Ed.), 99–105, Washington D. C.: HemisphereGoogle Scholar
  19. Friedlander, S. K. 1977: Smoke, dust and haze. New York: WileyGoogle Scholar
  20. Fuchs, N. A. 1964: The mechanics of aerosols. pp. 288–294, New York: Pergamon PressGoogle Scholar
  21. Hanson, R. K.; Chang, A. Y; Seitzman, J. M.; Lee, M. P.; Paul, P. H.; Battles, B. E. 1990: Laser-induced fluorescence diagnostics for supersonic flows. AIAA paper 90-0625, 28th Aerospace Science Meeting, Reno, NVGoogle Scholar
  22. Hermanson, J. C.; Winter, M. 1990: Laser-induced fluorescence imaging of supersonic shear flow. AIAA paper 90-0501, 28th Aerospace Science Meeting, Reno, NVGoogle Scholar
  23. Hidy, G. M. 1984: Aerosols: an industrial and environmental science. Orlando, FL: Academic PressGoogle Scholar
  24. Hidy, G. M.; Brock, J. R. 1970: The dynamics of aerocolloidal systems. Oxford: Pergamon Press, pp. 319–324Google Scholar
  25. Hidy, G. M.; Friedlander, S. K. 1964: Vapor condensation in the mixing zone of a jet, AIChE J. 10(1), 115–124Google Scholar
  26. McGregor, I. 1961: The vapor screen method of flow visualization. J. Fluid Mech. 11(4), 418–511Google Scholar
  27. Melling, A. 1986: Seeding gas flows for laser anemometry. AGARD-CP-399, 8.1–8.11Google Scholar
  28. Mungal, M. G.; Frieler, C. E. 1988: The effects of Damkohler number in a turbulent shear layer. Comb. Flame 71, 23Google Scholar
  29. Papamoschou, D.; Roshko, A. 1988: The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 477–543Google Scholar
  30. Roquemore, W. M.; Tankin, R. S.; Chui, H. H.; Lottes, S. A. 1986: A study of a bluff-body combustor using laser sheet lighting. Exp. in Fluids 4, 205–213Google Scholar
  31. Rosensweig, R. E.; Hottel, H. C.; Williams, G. C. 1961: Smoke-scattered light measurements of turbulent concentration fluctuations. Chemical Engineering Science 15, 111–129Google Scholar
  32. Samimy, M.; Lele, S. K. 1990: Motion of particles with inertia in a compressible free shear layer, submitted to Physics of Fluids A (also Samimy, M.; Lele, S. K. 1990: Particle-laden compressible free shear layers. AIAA 90-1977, 26th Joint Propulsion Conference, Orlando, FL)Google Scholar
  33. Scholz, P. D.; Byrd, L. W.; Paul, P. H. 1978: The effects of electric and acoustic fields on the collison rates of submicron sized DOP aerosol particles. Presented at the Symposium on the Transfer and Utilization of Particulate Control and Technology, Denver, COGoogle Scholar
  34. Settles, G. S.; Teng, H. Y. 1983: Flow visualization methods for separated three-dimensional shock wave/turbulent boundary layer interactions. AIAA J. 21, 390–397Google Scholar
  35. Settles, G. S. 1985: Flow visualization techniques for practical aerodynamic testing. In: Flow Visualization III: Proc. of the Third International Symposium on Flow Visualization. Yang, W. J. (Ed.) 306–315, Washington D.C.: HemisphereGoogle Scholar
  36. Settles, G. S. 1989: Aerospace and wind tunnel testing. Handbook of flow visualization, pp. 395–408, New York: HemisphereGoogle Scholar
  37. Smith, S.; Kumar, V; Smits, A.; Miles, R. 1989: The structure of supersonic turbulent boundary layers as revealed by density cross sections. Paper 19–1, Seventh Symposium on Turbulent Shear Flows, Stanford University, Stanford, CAGoogle Scholar
  38. Squires, K.; Eaton, J. 1990: Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2(7), 1191–1203Google Scholar
  39. Stever, H. G. 1958: Condensation in high speed flows. In: Fundamentals of Gas Dynamics. High Speed Aerodynamics and Jet Propulsion 3, 526, Princeton University PressGoogle Scholar
  40. Veret, C. 1985: Flow visualization by light sheet. Flow Visualization III: Proceedings of the Third International Symposium on Flow Visualization. Yang, W. J. (Ed.) 106–112, Washington D.C.: HemisphereGoogle Scholar
  41. Wegener, P. P.; Clumpner, J. A.; Wu, B. J. C. 1972: Homogeneous nucleation and growth of ethanol drops in supersonic flow. The Physics of Fluids 15(11), 1869–1876Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. T. Clemens
    • 1
  • M. G. Mungal
    • 1
  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations