Experiments in Fluids

, Volume 20, Issue 3, pp 165–177 | Cite as

Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry

  • J. Westerweel
  • A. A. Draad
  • J. G. Th. van der Hoeven
  • J. van Oord


A new and unique high-resolution image acquisition system for digital particle image velocimetry (DPIV) in turbulent flows is used for the measurement of fully-developed turbulent pipe flow at a Reynolds number of 5300. The flow conditions of the pipe flow match those of a direct numerical simulation (DNS) and of measurements with conventional (viz., photographic) PIV and with laser-Doppler velocimetry (LDV). This experiment allows a direct and detailed comparison of the conventional and digital implementations of the PIV method for a non-trivial unsteady flow. The results for the turbulence statistics and power spectra show that the level of accuracy for DPIV is comparable to that of conventional PIV, despite a considerable difference in the interrogation pixel resolution, i.e. 32 × 32 (DPIV) versus 256 × 256 (PIV). This result is in agreement with an earlier analytical prediction for the measurement accuracy. One of the advantages of DPIV over conventional PIV is that the interrogation of the DPIV images takes only a fraction of the time needed for the interrogation of the PIV photographs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian RJ (1995) Limiting resolution of particle image velocimetry for turbulent flow, Advances in Turbulence Research, Postech (March 27–29, Pohang, Korea) 1–19Google Scholar
  2. Coupland JM; Halliwell NA (1988) Particle image velocimetry: rapid transparency analysis using optical correlation. Appl. Opt. 27: 1919–1921Google Scholar
  3. CRC (1988) Handbook of Chemistry and Physics (Weast RC et al. eds.), 75th Edition. Boca Raton, FL: CRC Press F-10, F-40Google Scholar
  4. Draad AA; Kuiken GDC; Nieuwstadt FTM (1995) Transition to turbulence in pipe flow. In: Proceedings IUTAM Symp. “Laminar-Turbulent Transition” (Kobayashi R et al. eds.), (Sept. 5–9, 1994, Sendai, Japan), (in print)Google Scholar
  5. Eggels JGM; Westerweel J; Nieuwstadt FTM (1993) Direct numerical simulation of turbulent pipe flow. Appl Sci Res 51: 319–324Google Scholar
  6. Eggels JGM; Unger F; Weiss MH; Westerweel J; Adrian RJ; Friedrich R; Nieuwstadt FTM (1994) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268: 175–209Google Scholar
  7. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52: 309–329Google Scholar
  8. Grötzbach G (1983) Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection. J Comp Phys 49: 241–264Google Scholar
  9. Van der Hoeven JGTh; Westerweel J; Nieuwstadt FTM; Adrian RJ (1992) Application of digital particle image velocimetry to a turbulent pipe flow. In: Proc. IUTAM Symp Eddy Structure in Free Turbulent Shear Flows (Oct. 12–14, 1992, Poitiers, France), Dordrecht: KluwerGoogle Scholar
  10. Keane RD; Adrian RJ (1991) Optimization of particle image velocimeters. Part II: Multiple-pulsed systems. Meas Sci Technol 2: 963–974Google Scholar
  11. Liu Z-C; Landreth CC; Adrian RJ; Hanratty TJ (1991) High resolution measurement of turbulent structure in a channel with particle image velocimetry. Exp Fluids 10: 301–312Google Scholar
  12. Lourenço LMM; Whiffen MC (1986) Laser speckle methods in fluid dynamics application. In: Laser Anemometry in Fluid Mechanics — II (Adrian RJ et al. eds.), Instituto Superior Técnico, Lisbon, 51–68Google Scholar
  13. Prasad AK; Adrian RJ; Landreth CC; Offutt PW (1992) Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp Fluids 13: 105–116.Google Scholar
  14. Raffel M; Kompenhans J (1994) Error analysis for PIV recording utilizing image shifting. In: Proceedings 7th Internat Symp Appl Laser Techn Fluid Mech (July 11–14,1994, Lisbon, Portugal), paper 35.5Google Scholar
  15. Schlichting H (1979) Boundary-layer theory, Seventh Edition. New York: McGraw-HillGoogle Scholar
  16. Tahitu GJR (1994) The possibilities for laser-Doppler velocimetry in a turbulent pipe flow. Report MEAH-117 (Delft University of Technology). MSc-thesis (in Dutch)Google Scholar
  17. Westerweel J (1993a) Digital Particle Image Velocimetry-Theory and Application. Delft: Delft University PressGoogle Scholar
  18. Westerweel J (1993b) Analysis of PIV interrogation with low pixel resolution. In: Proceedings SPIE-2005 Optical Diagnostics in Fluid and Thermal Flow (July 14–16, 1993, San Diego, CA)Google Scholar
  19. Westerweel J; Adrian RJ; Eggels JGM; Nieuwstadt FTM (1993) Measurements with particle image velocimetry of fully developed turbulent pipe flow at low Reynolds number. In: Applications of Laser Techniques in Fluid Mechanics (Adrian RJ et al., eds.), Berlin: Springer, 285–307Google Scholar
  20. Westerweel J; Flōr JB; Nieuwstadt FTM (1991) Measurement of dynamics of coherent flow structures using particle image velocimetry. In: Applications of Laser Techniques in Fluid Mechanics (Adrian RJ et al., eds.), Berlin: Springer, 476–499Google Scholar
  21. Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data sets. Exp Fluids 16: 236–247Google Scholar
  22. Willert CE; Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10: 181–193Google Scholar
  23. Yao CS; Adrian RJ (1984) Orthogonal compression and 1-D analysis technique for measurement of particle displacements in pulsed laser velocimetry. Appl Opt 23: 1687–1689Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Westerweel
    • 1
  • A. A. Draad
    • 1
  • J. G. Th. van der Hoeven
    • 1
  • J. van Oord
    • 1
  1. 1.Laboratory for Aero and Hydrodynamics, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations