Advertisement

Journal of Comparative Physiology A

, Volume 178, Issue 4, pp 537–542 | Cite as

Response characteristics of a spider warm cell: temperature sensitivities and structural properties

  • R. Ehn
  • H. Tichy
Original Paper

Abstract

The sensitivity of a warm cell to temperature stimulation was examined electrophysiologically on the spider Cupiennius salei. The relationship between sensitivity and structure of the warm cell was assessed by comparing both the electrophysiological and electron-microscopic data with those described for insect cold cells. Stimulation of the spider warm cell with slowly oscillating temperature change and steady temperature elicited less sensitive responses than in insect cold cells. These characteristics are reflected in the size of the dendritic membrane area, which is smaller in the spider warm cell compared to the insect cold cells. Rapid step-like temperature change produced in the spider warm cell very sensitive responses when compared with data of insect cold cells. The dendritic tip of the spider warm cell is exposed at a pore on the tip of the sensillum but is covered by the cuticle of the sensillum in the insect cold cells.

Key words

Temperature sensitivity Spider warm cell Insect cold cells Dendritic membrane area Dendritic tip position 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30: 273–295Google Scholar
  2. Ameismeier F, Loftus R (1988) Response characteristics of cold cell on the antenna of Locusta migratoria L. J Comp Physiol A 163: 507–516Google Scholar
  3. Anton S, Tichy H (1994) Hygro- and thermoreceptors in tip pore sensilla of the tarsal organ of the spider Cupiennius salei: innervation and central projection. Cell Tissue Res 278: 399–407Google Scholar
  4. Blumenthal H (1935) Untersuchungen über das “Tarsalorgan” der Spinnen. Z Morphol Ökol Tiere 29: 667–719Google Scholar
  5. Braun HA, Schäfer K, Wissing H (1990) Theories and models of temperature transduction. In: Bligh J, Voigt K (eds) Thermoreception and temperature regulation. Springer, Berlin/Heidelberg New York, pp 19–29Google Scholar
  6. Corbière-Tichané G (1971) Structure nerveuse énigmatique dans l'antenne de la larve du Speophyes lucidulus Delar. (Coléoptère cavernicole de la sous-famille des Bathysciinae). Étude au microscope électronique. J Microscopie 10: 191–202Google Scholar
  7. Corbière-Tichané G, Loftus R (1983) Antennal thermal receptors of the cave beetle, Speophyes lucidulus Delar. II. Cold receptor response to slowly changing temperature. J Comp Physiol 153: 343–351Google Scholar
  8. Ehn R, Tichy H (1994) Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei. J Comp Physiol A 174: 345–350Google Scholar
  9. Haug T (1986) Struktur, Funktion und Projektion der antennalen Thermo- und Hygrorezeptoren von Antheraea pernyi (Lepidoptera: Saturniidae). Doctoral Dissertation, University of RegensburgGoogle Scholar
  10. Loftus R (1968) Response of the antennal cold receptor of Periplaneta americana to rapid temperature changes and to steady temperature. Z Vergl Physiol 59: 413–455Google Scholar
  11. Loftus R (1969) Differential thermal components in the response of the antennal cold receptor of Periplaneta americana to slowly changing temperature. Z Vergl Physiol 63: 415–433Google Scholar
  12. Loftus R, Corbière-Tichané G (1981) Antennal warm and cold receptors of the cave beetle, Speophyes lucidulus Delar., in sensilla with a lamellated dendrite. I. Response to sudden temperature change. J Comp Physiol 143: 443–452Google Scholar
  13. Loftus R, Corbière-Tichané G (1987) Response of antennal cold receptors of the catopid beetles, Speophyes lucidulus Delar. and Choleva angustata Fab. to very slowly changing temperature. J Comp Physiol A 161: 399–405Google Scholar
  14. Tichy H (1987) Hygroreceptor identification and response characteristics in the stick insect Carausius morosus. J Comp Physiol A 160: 43–53Google Scholar
  15. Yokohari F (1981) The sensillum capitulum, an antennal hygro- and thermoreceptive sensillum of the cockroach, Periplaneta americana L. Cell Tissue Res 216: 525–543Google Scholar
  16. Zimmermann B (1991) Differentiation of the thermo-/hygrosensitive (no-pore) sensilla on the antenna of Antheraea pernyi (Lepidoptera, Saturniidae): a study of cryofixed material. Cell Tissue Res 266: 427–440Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Ehn
    • 1
  • H. Tichy
    • 1
  1. 1.Biologiezentrum, Institut für Zoologie, Universität WienWienAustria

Personalised recommendations