Anatomy and Embryology

, Volume 188, Issue 5, pp 449–455

Physiological incongruity of the humero-ulnar joint: a functional principle of optimized stress distribution acting upon articulating surfaces?

  • Felix Eckstein
  • Florian Löhe
  • Erik Schulte
  • Magdalena Müller-Gerbl
  • Stefan Milz
  • Reinhard Putz
Original Articles

Abstract

Investigations into the distribution of subchondral bone density in the human elbow have suggested that the geometry of the trochlear notch deviates from a perfect fit with the trochlea, and that the load is transmitted ventrally and dorsally rather than through the centre of the humero-ulnar joint. We therefore decided to make a quantitative assessment of the degree of incongruity between the two components in 15 human specimens (age distribution 60 to 93 years) with different types of joint surface. Polyether casts of the joint cavity were prepared under loads of 10,40,160 and 640 N. The thickness of the casts was then measured at 50 predetermined points, and an area distribution of the width of the joint space represented in a two-dimensional template of the trochlear notch. The reproducibility of this procedure was tested by image analysis. At a load of 10 N, only a narrow space was present ventrally and dorsally in the joint, but in the depths of the trochlear notch a width of 0.5 to 1 mm was recorded in the centre, and up to 3 mm at its medial and lateral edges. Specimens with continuous articular cartilage showed a lower degree of incongruity than those with a divided articular surface. As the load was increased to 640 N, however, the original incongruity between the articular surfaces disappeared almost completely. The joint surfaces became more congruous, probably because of the viscoelastic properties of the articular cartilage and the subchondral bone, and the contact areas merged in the centre of the joint. It is suggested that this physiological incongruity brings about an optimal distribution of stress over the articular surface during the transmission of the load, and it may lead to better nourishment of the articular cartilage by providing intermittent mechanical stimulation and circulation of the synovial fluid.

Key words

Incongruity Humero-ulnar joint Elbow-joint physiology Stress distribution Joint loading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afoke NYW, Byers PD, Hutton WC (1980) The incongruous hip joint: a casting study. J Bone Joint Surg [Br] 62:511–514Google Scholar
  2. Bullough PG (1981) The geometry of diarthrodial joints, its physiological maintenance, and the possible significance of agerelated changes in geometry-to-load distribution and the developement of osteoarthritis. Clin Orthop 156:61–66Google Scholar
  3. Bullough PG, Jagannath A (1983) The morphology of the calcification front in articular cartilage. J Bone Joint Surg [Br] 65:72–78Google Scholar
  4. Bullough P, Goodfellow J, Greenwald AS, O'Connor S (1968) Incongruent surfaces in the human hip joint. Nature 217:1290–1291Google Scholar
  5. Bullough P, Goodfellow J, O'Connor J (1973) The relationship between degenerative changes and load bearing in the human hip. J Bone Joint Surg [Br] 55:746–758Google Scholar
  6. Carter DR (1984) Mechanical loading histories and cortical bone remodelling. Calcif Tissue Int 36:519–524Google Scholar
  7. Carter DR, Wong M, Orr TE (1991) Musculoskeletal ontogeny, phylogeny, and functional adaptation. J Biomech 24:3–16Google Scholar
  8. Eckstein F, Steinlechner M, Müller-Gerbl M, Putz R (1993a) Mechanische Beanspruchung und subchondrale Mineralisierung des menschlichen Ellbogengelenks — eine CT-osteoabsorptiometrische Studie. Unfallchir 96:399–404Google Scholar
  9. Eckstein F, Löhe F, Steinlechner M, Müller-Gerbl M, Putz R (1993b) Kontaktflächen des menschlichen Humeroulnargelenks in Abhängigkeit von der Anpreßkraft — ihr Zusammenhang mit subchondraler Mineralisierung und Gelenkflächenmorphologie der Incisura trochlearis. Ann Anat (in press)Google Scholar
  10. Goodfellow JW, Bullough PG (1967) The pattern of aging of the articular cartilage of the elbow joint. J Bone Joint Surg [Br] 49:174–181Google Scholar
  11. Goodfellow JW, Mitsou A (1977) Joint surface incongruity and its maintenance. J Bone Joint Surg [Br] 59:446–451Google Scholar
  12. Goel VK, Singh D, Bijlani V (1982) Contact areas in human elbow joints. J Biomech Eng 104:169–175Google Scholar
  13. Greenwald AS (1991) Biomechanics of the hip. In: Steinberg ME (ed) The hip and its disorders. Saunders, Philadelphia, pp 47–56Google Scholar
  14. Greenwald AS, Haynes DW (1972) Weight bearing areas in the human hip joint. J Bone Joint Surg [Br] 54:157–163Google Scholar
  15. Greenwald AS, O'Connor JJ (1971) The transmission of load through the human hip joint. J Biomech 4:507–528Google Scholar
  16. Hehne HJ (1983) Das Patellofemoralgelenk. Enke, StuttgartGoogle Scholar
  17. Ingelmark BE, Ekholm R (1948) A study on variations in the thickness of articular cartilage in association with rest and periodical load. Acta Soc Med Upsalien 53:61–74Google Scholar
  18. Kummer B (1962) Funktioneller Bau und funktioneile Anpassung des Knochens. Anat Anz 110:261–293Google Scholar
  19. Kurrat HJ (1977) Die Beanspruchung des menschlichen Hüftgelenk 6. Eine funktioneile Analyse der Knorpeldickenverteilung am menschlichen Femurkopf. Anat Embryol 150:129–140Google Scholar
  20. Miyanaga Y, Fukubayashi T, Kurosawa H (1984) Contact study of the hip joint: Arch Orthop Trauma Surg 103:13–17Google Scholar
  21. Morrey BF (1985) The elbow and its disorders. Saunders, PhiladelphiaGoogle Scholar
  22. Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394Google Scholar
  23. Müller-Gerbl M, Putz R (1993) Zur Morphologie und Mechanik der Gelenke in Abhängigkeit vom Lebensalter. In: Aktuelle Osteologie (in press)Google Scholar
  24. Müller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long term mechanical adaptation in individual joints. Skeletal Radiol 18:507–512Google Scholar
  25. Müller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 7[Suppl 2]:411–418Google Scholar
  26. Müller-Gerbl M, Putz R, Kenn R, Kierse R (1993) People in different age groups show different hip joint morphology. Clin Biomech 8:66–72Google Scholar
  27. Oberländer W, Breul R, Kurrat HJ (1984) Die Querfurche des Ellbogengelenkes. Eine biomechanische Deutung ihrer Entstehung. Z Orthop 122:623–742Google Scholar
  28. Pauwels F (1955) Über die Verteilung der Spongiosadichte im coxalen Femurende und ihre Bedeutung für die Lehre vom funktionellen Bau des menschlichen Knochens. 7. Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Morph JB 95:35–54Google Scholar
  29. Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. 10. Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z Anat Entwicklungsgesch 121:478–515Google Scholar
  30. Pauwels (1963) Die Druckverteilung im Ellbogengelenk, nebst grundsätzlichen Bemerkungen über den Gelenkdruck. 11. Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z Anat Entwicklungsgesch 123:643–667Google Scholar
  31. Radin EL, Paul IL (1970) Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum 13:139–144Google Scholar
  32. Radin EL, Paul IL, Lowy M (1970) A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J Bone Joint Surg [Am] 52:444–456Google Scholar
  33. Rushfeldt PD, Mann RW (1979) Influence of cartilage geometry on the pressure distribution in the human hip joint. Science 204:413–415Google Scholar
  34. Shiba R, Sorbie C, Siu DW, Bryant T, Derek T, Cooke DV, Wevers HW (1988) Geometry of the humeroulnar joint. J Orthop Res 6:897–906Google Scholar
  35. Stormont TJ, An KN, Morrey BF, Chao EY (1985) Elbow joint contact study: comparison of techniques. J Biomech 18:329–336Google Scholar
  36. Tillmann B (1971) Die Beanspruchung des menschlichen Ellenbogengelenkes. 1. Funktionelle Morphologie der Gelenkflächen. Z Anat Entwicklungsgesch 134:328–342Google Scholar
  37. Tillmann B (1978) A contribution to the functional morphology of articular surfaces. Thieme, StuttgartGoogle Scholar
  38. Walker PS (1977) Human joints and their artificial replacement. Thomas, SpringfieldGoogle Scholar
  39. Walmsley T (1928) Articular mechanics of the diarthrosses. J Bone Joint Surg 10:10–22Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Felix Eckstein
    • 1
  • Florian Löhe
    • 1
  • Erik Schulte
    • 2
  • Magdalena Müller-Gerbl
    • 1
  • Stefan Milz
    • 1
  • Reinhard Putz
    • 1
  1. 1.Anatomische Anstalt der Ludwig-Maximilians-UniversitätMünchenGermany
  2. 2.Anatomisches Institut der Johannes Gutenberg-UniversitätMainzGermany

Personalised recommendations