Advertisement

Anatomy and Embryology

, Volume 190, Issue 6, pp 541–548 | Cite as

The extravascular contractile system in the human placenta

Morphological and immunocytochemical investigations
  • R. Graf
  • J.-U. Langer
  • G. Schönfelder
  • T. Öney
  • S. Hartel-Schenk
  • W. Reutter
  • H. H. H. W. Schmidt
Original Articles

Abstract

In the human placenta, besides the fetal blood vessel system a second extravascular contractile system exists. It is localized in the chorionic plate and runs in a longitudinal direction and adjacent to fetal blood vessels into the stem villi, where it forms perivascular contractile sheaths. Characteristically, cells of the extravascular contractile system are extremely long and spindle-shaped and give rise to fine cell processes, by which they obviously contact each other or insert into the basement membrane of the trophoblast. They show immunoreactivity with desmin, vimentin, α-actin, myosin, nitric oxide synthase type I (brain form) and dipeptidyl peptidase IV. The ultrastructure suggests that cells of the extravascular contractile system are related to smooth muscle cells, including subpopulations with myofibroblastic features. In stem villi a few cells are nitric oxide synthase type I immunoreactive. These cells are thought to be specialized smooth-muscle-like cells of the extravascular contractile system or cells of the extravascular contractile system related to paraneurons that generate nitric oxide, which, in turn, may modulate the tone of perivascular contractile sheaths. The high dipeptidyl peptidase IV activity suggests that modulation of the extravascular contractile system may also occur by substance P.

Key words

Human placenta Smooth muscle-like cells Perivascular contractile sheath Nitric oxide synthase type I Dipeptidyl peptidase IV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock RJ (1969) Smooth muscle in the human placenta. Am J Obstet Gynecol 105:612–615Google Scholar
  2. Becker V, Schiebler T, Kubli F (1981) Die Plazenta des Menschen. Thieme, Stuttgart, p 55Google Scholar
  3. Beham A, Denk H, Desoye G (1988) The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9:479–492Google Scholar
  4. Bertolini R, Reißig D, Schippel K (1969) Elektronenmikroskopische Befunde an den Zellen in der Chorionplatte der reifen menschlichen Plazenta. Z Mikrosk-Anat Forsch 80:358–368Google Scholar
  5. Boura ALA, Walters WAW (1991) Autacoids and the control of vascular tone in the human umbilical-placental circulation. Placenta 12:453–477Google Scholar
  6. Demir R, Demir N, Kohnen G, Kosanke G, Mironov V, Üstünel I (1992) Ultrastructure and distribution of myofibroblast-like cells in human placental stem villi. Electron Microsc 3:509–510Google Scholar
  7. Dubreuil G, Riviére M (1932) Formations fibro-musculaires du chorion et des villosités du placenta humain. CR Seances Soc Biol Fil 111:170–172Google Scholar
  8. Feller AC, Schneider H, Schmidt D, Parwaresch MR (1985) Myofibroblasts as a major cellular constituent of villous stroma in human placenta. Placenta 6:405–415Google Scholar
  9. Gown AM (1990) The mysteries of the myofibroblast (partially) unmasked. Lab Invest 63:1–3Google Scholar
  10. Graf R, Frank HG, Öney T (1992) Histochemical and immunocytochemical investigations of the fetal extravascular and vascular contractile system in the normal placenta and during preeclampsia. In: Neubert D, Kavlock RJ, Merker HJ, Klein J (eds) Risk assessment of prenatally-induced adverse health effects. Springer, Berlin Heidelberg New York, pp 537–550Google Scholar
  11. Graf R, Langer J-U, Schönfelder G, Hartel-Schenk S, Reutter W (1993) The extravascular system of the human placenta. Placenta 14:A.25Google Scholar
  12. Hagemann A, Nielsen AH, Poulsen K (1994) The uteroplacental renin-angiotensin system: a review. Exp Clin Endocrinol (in press)Google Scholar
  13. Happe H (1906) Beobachtungen an Eihäuten junger menschlicher Eier. Anat Hefte 32:173–212Google Scholar
  14. Hartel S, Hanski C, Kreisel W, Hoffmann C, Mauck J, Reutter W (1987) Rapid purification of dipeptidyl peptidase IV from rat liver plasma membranes. Biochim Biophys Acta 924:543–547Google Scholar
  15. Heymann E, Mentlein R (1984) Beeinflußt Dipeptidylpeptidase IV Blutdruck und Gerinnung? Klin Wochenschr 62:2–10Google Scholar
  16. Hsi BL, Yeh CJG (1988) Monoclonal antibodies to placental vascular structures. Trophoblast Res 3:139–148Google Scholar
  17. Huszar G, Bailey P (1979a) Isolation and characterization of myosin in the human term placenta. Am J Obstet Gynecol 135:707–712Google Scholar
  18. Huszar G, Bailey P (1979b) Relationship between actin-myosin interaction and myosin light chain phosphorylation in human placental smooth muscle. Am J Obstet Gynecol 135:718–726Google Scholar
  19. Kaufmann P, Sen DK, Schweikhart G (1979) Classification of human placental villi. I. Histology. Cell Tissue Res 200:409–423Google Scholar
  20. King TM, Gröschel-Stewart U (1965) Placental contractile protein. Am J Obstet Gynecol 93:253–258Google Scholar
  21. Kloos K, Vogel M (1974) Pathologie der Perinatalperiode. Thieme, Stuttgart, pp 22–27Google Scholar
  22. Kohnen G, Mironov V, Demir R, Castellucci M, Kaufmann P (1993) Immunhistochemie und Ultrastruktur kontraktiler Zellen im Zottenstroma der menschlichen Placenta. Ann Anat 175 [Suppl]:37Google Scholar
  23. Krantz KE, Parker JC (1963) Contractile properties of the smooth muscle in the human placenta. Clin Obstet Gynecol 6:26–38Google Scholar
  24. Lojda Z, Gossrau R, Stoward PJ (1991) Proteases. In: Stoward PJ, Pearse AGE (eds) Histochemistry. Theoretical and applied, vol 3. Enzyme histochemistry, 4th edn. Churchill Livingstone, Edinburgh, pp 305–309Google Scholar
  25. McDonald JK, Barrett AJ (1986) Mammalian proteases: a glossary and bibliography, vol 2. Academic Press, LondonGoogle Scholar
  26. Michael C (1974) Actomyosin content of the human placenta. J Obstet Gynaecol 81:307–310PubMedGoogle Scholar
  27. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  28. Myatt L (1992) Control of vascular resistance in the human placenta. Placenta 13:329–341Google Scholar
  29. Pappas PW (1971) The use of a chrome alum-gelatin (subbing) solution as a general adhesive for paraffin sections. Stain Technol 46:121–124Google Scholar
  30. Püschel G, Mentlein R, Heymann E (1982) Isolation and characterization of dipeptidyl peptidase IV from human placenta. Eur J Biochem 126:359–365Google Scholar
  31. Romeis B (1968) Mikroskopische Technik. Oldenbourg, MunichGoogle Scholar
  32. Schmidt HHHW, Böhme E (1990) NO, ein hormonaler Wirkstoff. Med Mol Pharmacol 3:74–81Google Scholar
  33. Schmidt HHHW, Gagne GD, Nakane M, Pollock JS, Miller MF, Murad F (1992) Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH-diaphorase but not with soluble guanylyl cyclase, and novel paraneuronal functions for nitrinergic signal transduction. J Histochem Cytochem 40:1439–1456Google Scholar
  34. Schönfelder G, Graf R, Schmidt HHHW (1993) A possible regulation of the extravascular contractile system in human placenta by nitric oxide synthase immunoreactive cells. Placenta 14:A.69Google Scholar
  35. Spanner R (1936) Mütterlicher und kindlicher Kreislauf der menschlichen Plazenta und seine Strombahnen. Z Anat Entwicklungsgesch 105:163–242Google Scholar
  36. Vogel M (1992) Atlas der morphologischen Plazentadiagnostik. Springer, Berlin Heidelberg New York, pp 4 and 80–91Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Graf
    • 1
  • J.-U. Langer
    • 1
  • G. Schönfelder
    • 1
  • T. Öney
    • 2
  • S. Hartel-Schenk
    • 3
  • W. Reutter
    • 3
  • H. H. H. W. Schmidt
    • 4
  1. 1.Institut für AnatomieFreie Universität BerlinBerlinGermany
  2. 2.Frauenklinik und Poliklinik, UK SteglitzFreie Universität BerlinBerlinGermany
  3. 3.Institut für Molekularbiologie und BiochemieFreie Universität BerlinBerlinGermany
  4. 4.Institut für Biochemie und PathobiochemieMedizinische Universität WürzburgWürzburgGermany

Personalised recommendations