Advertisement

Biodegradation

, Volume 3, Issue 1, pp 19–36 | Cite as

A mechanistic perspective on bacterial metabolism of chlorinated methanes

  • Lawrence P. Wackett
  • Michael S. P. Logan
  • Frank A. Blocki
  • Cai Bao-li
Focus Section: Microbial Metabolism of C1-Pollutants

Abstract

Chlorinated methanes are important environmental pollutants, which can be metabolized by bacteria. The biotransformation of chlorinated methanes by bacteria has been shown to be due either to gratuitous metabolism (cometabolism) or their use as a source of carbon and energy. The reactions which result in carbon-halogen bond cleavage include substitutive, reductive, oxygenative, and gem-elimination mechanisms. Certain methylotrophic bacteria can use dichloromethane as a source of carbon and energy. Dichloromethane dehalogenase catalyzes the first substitutive reaction in this metabolism. The enzyme shows a 1010-fold rate enhancement over the reaction of the bisulfide anion with dichloromethane in water. Pseudomonas putida G786 synthesizes cytochrome P-450CAM which catalyzes the gratuitous reduction of chlorinated methanes. These studies with purified enzymes are beginning to reveal more detailed mechanistic features of bacterial chlorinated methane metabolism.

Key words

chloromethanes chlorofluoromethanes mechanisms bacteria dehalogenation biodegradation 

Abbreviations

DNA

deoxyribonucleic acid

kcat

catalytic first order rate constant for an enzyme catalyzed reaction

KM

Michaelis constant for an enzyme catalyzed reaction

MNDO

modified neglect of diatomic overlap

PIMA

pattern induced multialignment

DCMD

dichloromethane dehalogenase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed & Anders (1976) Metabolism of dihalomethanes to formaldehyde and inorganic halide I. In vitro studies. Drug Metab. Dispo. 4: 357–361Google Scholar
  2. AhmedAE & AndersMW (1978) Metabolism of ihalomethanes to formaldehyde and inorganic halide II. Studies on the mechanism of the reaction. Biochem. Pharmacol. 27: 2021Google Scholar
  3. Alvarez-CohenL & McCartyPL (1991a) Two-stage dispersedgrowth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387–1393Google Scholar
  4. Alvarez-CohenL & McCartyPL (1991b) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 57: 1031–1037Google Scholar
  5. AndersMW & PohlLR (1985) Halogenated alkanes. In: AndersMW (Ed) Bioactivation of Foreign Compounds, Halogenated Alkanes (pp 283–315). Academic Press, New YorkGoogle Scholar
  6. AndersonJG, TooheyDW & BruneWH (1991) Free radicals within the antarctic vortex: the role of CFC's in antarctic ozone loss. Science 251: 39–46Google Scholar
  7. AnthonyC (1982) The Biochemistry of Methylotrophs. Academic Press, LondonGoogle Scholar
  8. ArmstrongRN (1991) Glutathione S-transferases: reaction mechanism, structure, and function. Chem. Res. Toxicol. 4: 131–140PubMedGoogle Scholar
  9. BouwerEJ & McCartyPL (1983) Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294Google Scholar
  10. BouwerEJ, RittmanBE & McCartyPL (1981) Anaerobic degradation of halogenated 1- and 2-carbon compounds. Environ. Sci. Tech. 15: 596–599Google Scholar
  11. BradshawWH, ConradHE, CoreyEJ, GunsalusIC & LednicerD (1959) Microbiological degradation of (+)-camphor. J. Am. Chem. Soc. 81: 5507Google Scholar
  12. BrusseauGA, TsienHC, HansonRS & WackettLP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29Google Scholar
  13. CastroCE, WadeRS & BelserNO (1985) Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry 24: 204–210Google Scholar
  14. ChouPY & FasmanGD (1978) Empirical predictions of protein conformation. Ann. Rev. Biochem. 47: 251–276Google Scholar
  15. ColbyJ, StirlingD & DaltonH (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402Google Scholar
  16. CriddleCS, DeWittJT & McCartyPL (1990a) Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12 Appl Environ. Micro. 56: 3247–3254Google Scholar
  17. CriddleCS, DeWittJT, Grbić-CalićD & McCartyPL (1990b) Transformation of carbon tetrachloride by Pseudomonas sp KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246Google Scholar
  18. DeanJA (1985) Lange's Handbook of Chemistry (13th ed.). McGraw-Hill, New YorkGoogle Scholar
  19. DiekertG, KleeB & ThauerRK (1980) Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch. Microbiol. 124: 103–106Google Scholar
  20. DiStefanoTD, GossetJM & ZinderSH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57: 2287–2292Google Scholar
  21. DouglasKT (1987) Mechanism of action of glutathione dependent enzymes. In: MeisterA (Ed) Advances in Enzymology and Related Areas of Molecular Biology 59: 103–167. John Wiley & Sons, New YorkGoogle Scholar
  22. EgliC, ScholtzR, CookAM & LeisingerT (1988a) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43: 257–261Google Scholar
  23. EgliC, TschanT, ScholtzR, CookAM & LeisingerT (1988b) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 54: 2819–2824Google Scholar
  24. EgliC, StromeyerS, CookAM & LeisingerT (1990) Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol. Lett. 68: 207–212Google Scholar
  25. FisherMT & SligarSG (1985) Control of heme protein potential and reduction rate: linear free energy relation between potential and ferric spin state equilibrium. J. Am. Chem. Soc. 107: 5018–5019Google Scholar
  26. FoxBG, BornemanJG, WackettLP & LipscombJD (1990) Haloalkane oxidation by the soluble methane monooxygenase from Methylsinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419–6427Google Scholar
  27. FreedmanDL & GossetJM (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57: 2847–2857Google Scholar
  28. FukuiK, MorokumaK, KatoH & YonezawaT (1963) Polarographic reductive and electronic structures of organic halides. Bull. Chem. Soc. Japan 36: 217–222Google Scholar
  29. Gälli R (1986) Optimierung des mikrobiellen abbaus von dichloromethan in einem wirbelschicht-bioreaktor. Ph.D. dissertation, Swiss Federal Institute of Technology (ETH) ZürichGoogle Scholar
  30. GälliR & McCartyPL (1989) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55: 837–844Google Scholar
  31. GälliR, StuckiG & LeisingerT (1982) Mechanism of dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Experentia 38: 1378Google Scholar
  32. GantzerCJ & WackettLP (1991) Reductive dehalogenation catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25: 715–722Google Scholar
  33. GraminskiGF, KuboY, & ArmstrongRN (1989) Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione S-transferase. Biochemistry 28: 3562–3568Google Scholar
  34. GreimH, BimboesD, EgertG, GoeggelmanW & KraemerM (1977) Mutagenicity and chromosomal aberrations as an analytical tool for in vitro detection of mammalian enzyme-mediated formation of reactive metabolites. Arch. Toxicol. 39: 159–169Google Scholar
  35. GunsalusIC, MeeksJR, LipscombJD, DebrunnerP & MünckE (1974) In: HayaishiO (Ed) Molecular Mechanisms of Oxygen Activation: Bacterial Monooxygenases — The P-450 Cytochrome system (pp 559–613) Academic Press, New York.Google Scholar
  36. HanzlickRP (1981) Reactivity and toxicity among halogenated methanes and related compounds. Biochem. Pharmacol. 30: 3027–3030Google Scholar
  37. HardmanDJ (1991) Biotransformations of halogenated compounds. CRC Crit. Rev. in Biotech. 11: 1–40Google Scholar
  38. HartmansS, SchmuckleA, CookAM & LeisingerT (1986) Methyl chloride: naturally ocurring toxicant and C-1 growth substrate. J. Gen. Microbiol. 132: 1139–1142Google Scholar
  39. HineJ, DowellAM & SingleyJE (1956) Carbon dihalides as intermediates in the basic hydrolysis of haloforms. IV Relative reactivities of haloforms. J. Am. Chem. Soc. 78: 479–482Google Scholar
  40. Holliger C (1992) Reductive dehalogenation by anaerobic bacteria. Ph.D. dissertation, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  41. JakobyWB & KeenJH (1977) A triple threat in detoxification: the glutathione S-transferases. Trends Biochem. Sci. 2: 229–231Google Scholar
  42. JencksWP (1975) In: MeisterA (Ed) Advances in enzymology and related areas of molecular biology 43: 219. John Wiley & Sons, New YorkGoogle Scholar
  43. KeenJH, HabigWH & JakobyWB (1976) Mechanism for the several activities of the glutathione S-transferases. J. Biol. Chem. 251: 6183–6188Google Scholar
  44. KleckaGM & GonsiorSJ (1984) Reductive dechlorination of chlorinated methanes and ethanes by reduced iron(II) porphyrins. Chemosphere 13: 391–402Google Scholar
  45. Kohler-StaubD, HartmansS, GälliR, SuterF & LeisingerT (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 132: 2837–2843Google Scholar
  46. Kohler-StaubD & LeisingerT (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162: 676–681Google Scholar
  47. KroneUE & ThauerRK (1992) Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeri. FEMS Microbiol. Lett. 90: 201–204Google Scholar
  48. KroneUE, LauferK, ThauerRK & HogenkampHPC (1989a) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated hydrocarbons in methanogenic bacteria. Biochemistry 28: 10061–10065Google Scholar
  49. KroneUE, ThauerRK & HogenkampHPC (1989b) Reductive dehalogenation of chlorinated C1 hydrocarbons mediated by corrinoids. Biochemistry 28: 4908–4914Google Scholar
  50. KroneUE, ThauerRK, HogenkampHPC & SteinbachK (1991) Reductive formation of carbon monoxide from CCl4 and Freons 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30: 2713–2719Google Scholar
  51. LamT & VilkerVL (1987) Biodehalogenation of bromotrichloromethane and 1,2- dibromo-3-chloropropane by Pseudomonas putida G786. Biotechnol. Bioeng. 29: 151–159Google Scholar
  52. LaRocheSA & LeisingerT (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J. Bacteriol. 172: 164–171Google Scholar
  53. LcuschnerF, NewmanBW & HuebscherF (1983) Report on subacute toxicological studies with several fluorocarbons in rats and dogs by inhalation. Arzneim.-Forsch. 33: 1475–1476Google Scholar
  54. LiuS, ZhangP, XinhuaJ, JohnsonWW, GillilandGL & ArmstrongRN (1992) Contribution of tyrosine 6 to the catalytic mechanism of isozyme 3–3 of glutathione S-transferase. J. Biol. Chem. 267: 4296–4299Google Scholar
  55. Logan MSP, Newman LM, Schanke CA & Wackett LP (1992) Co-substrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P-450CAM. Biodegradation (submitted)Google Scholar
  56. LukeBT & LoewGH (1986) A theoretical investigation of the first step in the metabolic reduction of halogenated methanes by cytochrome P-450. Internat. J. Quant. Chem.: Quant. Biol. Symp. 12: 99–112Google Scholar
  57. MabeyW & MillT (1978) Critical review of hydrolysis of organic coumpounds in water under environmental conditions. J. Phys. Chem. Ref. Data 7: 383–415Google Scholar
  58. MarchJ (1985) Advanced organic chemistry: reactions, mechanisms and structure. John Wiley & Sons, New YorkGoogle Scholar
  59. MeyerDJ, ColesB, PembleSE, GilmoreKS, FraserGM & KettererB (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 274: 409–414Google Scholar
  60. MeyerO & SchlegelHG (1983) Biology of aerobic carbon monoxide-oxidizing bacteria. Ann. Rev. Microbiol. 37: 277–310Google Scholar
  61. MikesellMD & BoydSA (1990) Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56: 1198–1201Google Scholar
  62. Moelwyn-HughesEA (1949) Kinetics of certain reactions between methyl halides and anions in water. Proc. Royal Soc. (London) Ser. A 196: 540–553Google Scholar
  63. MohnWW & TiedjeJM (1990) Strain DCB-1 conserves energy for growth from reductive dehalogenation coupled to formate oxidation. Arch. Microbiol. 153: 267–271Google Scholar
  64. MohnWW & TiedjeJM (1992) Microbial reductive dehalogenation Microbiol. Rev. 56: 482–507PubMedGoogle Scholar
  65. NeidlemanSL & GeigertJ (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood Ltd, Chichester, UKGoogle Scholar
  66. OldenhuisR, OedzesJY, van derWaardeJJ & JanssenDB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichorsporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7–14Google Scholar
  67. PatelRN, HouCT, LaskinAI & FelixA (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl. Environ. Microbiol. 44: 1130–1137Google Scholar
  68. PfaltzA, JuanB, FasslerA, EschenmoserA, JaenchenR, GillesHH, DiekertG & ThauerRK (1982) Zur kenntnis des faktors F430 aus Methanogenen Bakterien: Struktur des pophinoiden Ligandsystems. Helv. Chim. Acta 65: 828–865Google Scholar
  69. PoulosTL, FinzelBC, GunsalusIC, WagnerGC & KrautJ (1985) The 2.6 Å crystal structure of Pseudomonas putida cytochrome P-450. J. Biol. Chem. 260: 16122–16130Google Scholar
  70. PoulosTL & RaagR (1992) Cytochrome P-450CAM: crystallography, oxygen activation, and electron transfer. FASEB J. 6: 674–679Google Scholar
  71. RagsdaleSW & WoodHG (1985) Acetate biosynthesis by acetogenic bacteria. J. Biol. Chem. 260: 3970–3977Google Scholar
  72. RasmussenRA, KhalilMAR & DallugeRW (1980) Concentration and distribution of methyl chloride in the atmosphere. J. Geophys. Res. 85: 7350–7356Google Scholar
  73. RaybuckSA, BastianNR, ZydowskyLD KobayashiK, FlossHG, Orme-JohnsonWH & WalshCT (1987) Nickel containing CO dehydrogenase catalyzes reversible decarbonylation of acetyl CoA with retention of stereochemistry at the methyl group. J. Am. Chem. Soc. 109: 3171–3173Google Scholar
  74. ReinemerP, DirrHW, LadensteinR, SchafferJ, GallayO & HuberR (1991) The three dimensional structure of class π glutathione S-transferase in complex with glutathione sulfonate at 2.3 Å resolution. EMBO J. 10: 1997–2005Google Scholar
  75. Roberts AL (1991) Dehalogenation reactions of polyhalogenated alkanes in aquatic environments. Ph. D. Dissertation Massachusetts Institute of TechnologyGoogle Scholar
  76. Roberts AL & Gschwend PM (1992) Nucleophilic substitution reactions of dihalomethanes with the bisulfide ion HS-. Environ. Sci. Technol. (in press)Google Scholar
  77. SchankeCA & WackettLP (1992) Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ. Sci. Technol. 26: 830–833Google Scholar
  78. ScholtzR, WackettLP, EgliC, CookAM & LeisingerT (1988) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast growing dichloromethane-utilizing bacterium. J. Bacteriol. 170: 5698–5704Google Scholar
  79. SchrauzerGN & Deutsch (1969) Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes(I) and related compounds. J. Am. Chem. Soc. 91: 3341–3350Google Scholar
  80. SligarSG, FilipovicD & StaytonPS (1991) Mutagenesis of cytochrome P-450CAM and b 5. Met. Enzymol206: 31–49Google Scholar
  81. SligarSG & GunsalusIC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monooxygenase. Proc. Natl. Acad. Sci. USA 73: 1078–1082Google Scholar
  82. SmithRF & SmithTF (1990) Automatic generation of primary sequence patterns from sets of related sequences. Proc. Natl. Acad. Sci. USA 87: 118–122Google Scholar
  83. StromeyerSA, WinkelbauerW, KohlerH, CookAM & LeisingerT (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2: 129–137Google Scholar
  84. StuckiG, BrunnerW, StaubD, & LeisingerT (1981a) Microbial degradation of chlorinated C1 and C2 hydrocarbons. In: LeisingerT & CookAM (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 131–137). Academic Press, New YorkGoogle Scholar
  85. StuckiG, GälliR, EbersoldHR & LeisingerT. (1981b) Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol. 130: 366–371Google Scholar
  86. TiedjeJM, BoydSA & FathepureBZ (1987) Anaerobic degradation of chlorinated aromatic compounds. Dev. Ind. Microbiol. 27: 117–127Google Scholar
  87. TrauneckerJ, PreubA & DiekertG (1991) Isolation and characterization of a methyl chloride utilizing strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421Google Scholar
  88. VanelliT, LoganM, ArcieroDM, & HooperAB (1990) Degradation of halogenated aliphatic compounds by the ammoniaoxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56: 1169–1171Google Scholar
  89. VogelTM, CriddleCS & McCartyPL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 711–736Google Scholar
  90. WadeRS & CastroCE (1973) Oxidation of iron(II) porphyrins by alkyl halides. J. Am. Chem. Soc. 95: 226–230Google Scholar
  91. WalshCT (1979) Enzymatic Reaction Mechanisms (pp 24–48). WH Freeman & Company, San FranciscoGoogle Scholar
  92. WolfCR, KingLJ & ParkeDV (1978) The anaerobic dechlorination of trichlorofluoromethane by rat liver preparations in vitro. Chem.-Biol. Interact. 21: 277–288Google Scholar
  93. WolfCR, MansuyD, NastaincyzkW, DeutschmannG & UllrichV (1977) The reduction of polyhalogenated methanes by liver microsomal P-450. Mol. Pharmacol. 13: 698–705Google Scholar
  94. WolfeRS (1985) Unusual coenzymes of methanogenesis. Trends Biochem. Sci. 10: 396–399Google Scholar
  95. WoodJM, KennedyFS & WolfeRS (1968) The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7: 1707–1713Google Scholar
  96. WoodJM, MouraI, MouraJJG, SantosMH, XavierAV, LeGallJ & ScandellariM (1982) Role of vitamin B12 in methyl transfer for methane biosynthesis of Methanosarcina barkeri. Science 216: 303–305Google Scholar
  97. WuosmaaAM & HagerLP (1990) Methyl chloride transferase: a carbocation route for the synthesis of halometabolites. Science 249: 160–162Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Lawrence P. Wackett
    • 1
    • 2
  • Michael S. P. Logan
    • 1
    • 2
  • Frank A. Blocki
    • 1
    • 2
  • Cai Bao-li
    • 3
  1. 1.Department of BiochemistryUniversity of MinnesotaSt. PaulUSA
  2. 2.Institute for Advanced Studies in Biological Process TechnologyUniversity of MinnesotaSt. PaulUSA
  3. 3.Institute of Molecular BiologyNankai UniversityTianjinPeople's Republic of China

Personalised recommendations