Experiments in Fluids

, Volume 14, Issue 3, pp 203–208 | Cite as

Corrections for velocity and temperature derivatives in turbulent flows

  • R. A. Antonia
  • J. Mi
Originals

Abstract

Spectral corrections, which are based on local isotropy, are presented for all the spatial derivatives of velocity and temperature fluctuations which feature in the average dissipations of turbulent energy and temperature. The corrections, which compensate for the spectral attenuation due to the separation between sensors, depend only weakly on the choice of the three-dimensional energy (or temperature) spectrum and therefore on the turbulence Reynolds number. Corrections are also obtained for the variances of velocity and temperature derivatives. The diagonal velocity derivatives require smaller corrections than either the off-diagonal velocity derivatives or the temperature derivatives. Corrections of comparable magnitude are required for the average dissipations of turbulent energy and temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonia, R. A.; Anselmet, F.; Chambers, A. J. 1986: Assessment of local isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365–391Google Scholar
  2. Antonia, R. A.; Shah, D. A.; Browne, L. W. B. 1987: Spectra of velocity derivatives in a turbulent wake. Phys. Fluids 30, 3455–3462Google Scholar
  3. Antonia, R. A.; Shah, D. A.; Browne, L. W. B. 1988a: Dissipation and vorticity spectra in a turbulent wake. Phys. Fluids 31, 1805–1807Google Scholar
  4. Antonia, R. A.; Browne, L. W. B.; Shah, D. A. 1988b: Characteristics of vorticity fluctuations in a turbulent wake. J. Fluid Mech. 189, 349–365Google Scholar
  5. Antonia, R. A.; Browne, L. W. B.; Kim, J. 1991: Some characteristics of small scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388Google Scholar
  6. Batchelor, G. K. 1953: The theory of homogeneous turbulence. Cambridge: Cambridge University PressGoogle Scholar
  7. Browne, L. W. B.; Antonia, R. A.; Chambers, A. J. 1983: Effect of the separation between cold wires on the spatial derivatives of temperature in a turbulent flow. Boundary-Layer Meteorol. 27, 129–140Google Scholar
  8. Champagne, R. H. 1978: The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67–108Google Scholar
  9. Champagne, F. H.; Friehe, C. A.; LaRue, J. C.; Wyngaard, J. C. 1977: Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J. Atmos. Sci. 34, 515–530Google Scholar
  10. Corrsin, S. 1964: Further generalization of Onsager's cascade model for turbulent spectra. Phys. Fluids 7, 1156–1159Google Scholar
  11. Domaradzky, J. A.; Rogallo, R. S. 1991: Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A, 2, 413–426Google Scholar
  12. Durbin, P. A.; Speziale, C. G. 1991: Local anisotropy in strained turbulence at high Reynolds numbers. J. Fluids Eng. 113, 707–709Google Scholar
  13. Hinze, J. O. 1959: Turbulence — an introduction to its mechanism and theory. New York: McGraw-HillGoogle Scholar
  14. Kolmogorov, A. N. 1941: The local structure of turbulence in an incompressible fluid with very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305Google Scholar
  15. Mestayer, P.; Chambaud, P. 1979: Some limitation to measurements of turbulence micro-structure with hot- and cold-wires. Boundary-Layer Meteorol. 16, 311–329Google Scholar
  16. Pao, Y.-H. 1965: Structure of turbulent velocity and scalar fields in large wavenumbers. Phys. Fluids 8, 1063–1075Google Scholar
  17. Roberts, J. B. 1973: On the correction of hot wire turbulence measurements for spatial resolution errors. Aero. Jnl. 77, 406–412Google Scholar
  18. Smith, L. M.; Reynolds, W. C. 1991: The dissipation-range spectrum and the velocity-derivative skewness in turbulent flows. Phys. Fluids A 3, 992–994Google Scholar
  19. Uberoi, M. S.; Kovasznay, L. S. G. 1953: On mapping and measurement of random fields. Q. Appl. Math. 10, 375–393Google Scholar
  20. Wyngaard, J. C. 1968: Measurements of small-scale turbulence structure with hot wires. J. Sci. Instrum. 1, 1105–1108Google Scholar
  21. Wyngaard, J. C. 1969: Spatial resolution of the vorticity meter and other hot-wire arrays. J. Sci. Instrum. 2, 983–987Google Scholar
  22. Wyngaard, J. C. 1971: Spatial resolution of a resistance wire temperature sensor. Phys. Fluids 14, 2052–2054Google Scholar
  23. Yeung, P. K.; Brasseur, J. G. 1991: The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales. Phys. Fluids A 3, 884–897Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • R. A. Antonia
    • 1
  • J. Mi
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of NewcastleAustralia

Personalised recommendations