Journal of Comparative Physiology A

, Volume 172, Issue 2, pp 189–205 | Cite as

Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera)

I. Description of flight


Bees and wasps are known to use a visual representation of the nest environment to guide the final approach to their nest. It is also known that they acquire this representation during an orientation flight performed on departure.

A detailed film analysis shows that orientation flights in solitary wasps of the genus Cerceris consist of a systematic behavioural sequence: after lift-off from the nest entrance, wasps fly in ever increasing arcs around the nest. They fly along these arcs obliquely to their long axis and turn so that the nest entrance is held in the left or right visual field at retinal positions between 30° and 70° from the midline. Horizontal distance from the nest and height above ground increase throughout an orientation flight so that the nest is kept at retinal elevations between 45° and 60° below the horizon. The wasps' rate of turning is constant at between 100°/s and 200°/s independent of their distance from the nest and their ground velocity increases with distance. The consequence of this is that throughout the flight wasps circle at a constant angular velocity around the nest.

Orientation flights are strongly influenced by landmark lay-out. Wasps adjust their flight-path and their orientation in a way that allows them to fixate the nest entrance and to hold the closest landmark in their frontal visual field.

The orientation flight generates a specific topography of motion parallax across the visual field. This could be used by wasps to acquire a series of snapshots that all contain the nest position, to acquire snapshots of close landmarks only (distance filtering), to exclude shadow contours from their visual representation (figure-ground discrimination) or to gain information on the distance of landmarks relative to the nest.

Key words

Insects Hymenoptera Homing Visual spatial memory Landmark orientation Orientation flights 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballard DH (1989) Reference frames for human vision. In: Erber J, Menzel R, Pflüger H-J, Todt D (eds) Neural mechanisms of behavior. Thieme, Stuttgart New York, pp 220–221Google Scholar
  2. Barth M, Ishiguro H, Tsuji S (1991) Determining robot egomotion from motion parallax observed by an active camera. Proc 12th Int Joint Conf Artificial Intelligence, Sydney, pp 1247–1253Google Scholar
  3. Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z Vergl Physiol 41:1–25Google Scholar
  4. Cartwright B, Collett T (1979) How honey-bees know their distance from a near-by visual landmark. J Exp Biol 82:367–372Google Scholar
  5. Cartwright BA, Collett TS (1983) Landmark learning in bees: experiments and models. J Comp Physiol 151:521–543Google Scholar
  6. Cartwright BA, Collett TS (1987) Landmark maps for honeybees. Biol Cybern 57:85–93Google Scholar
  7. Cheng K, Collett TS, Wehner R (1986) Honeybees learn the colours of landmarks. J Comp Physiol A 159:69–73Google Scholar
  8. Cheng K, Collett TS, Pickhard A, Wehner R (1987) The use of visual landmarks by honeybees: Bees weight landmarks according to their distance to the goal. J Comp Physiol A 161:469–475Google Scholar
  9. Collett TS (1992) Landmark learning and guidance in insects. Phil Trans R Soc Lond B 337:295–303Google Scholar
  10. Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly, Syritta pipiens. J Comp Physiol 99:1–66Google Scholar
  11. Collett TS, Lehrer M (1993) On the learning of distance cues by honeybees when approaching and leaving a goal and an analysis of their orientation flights. J Comp Physiol A (submitted)Google Scholar
  12. Freisling J (1938) Die Nestorientierung von Vespa germanica und ihre Bedeutung für das Staatsganze. Z Tierpsychol 2:75–80Google Scholar
  13. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Spinger, Berlin Heidelberg New YorkGoogle Scholar
  14. Gould JL (1988a) Resolution of pattern learning by honey bees. J Insect Behav 1:225–233Google Scholar
  15. Gould JL (1988b) Timing of landmark learning by honey bees. J Insect Behav 1:373–377Google Scholar
  16. Grossmann KE (1970) Erlernen von Farbreizen an der Futterquelle durch Honigbienen während des Anflugs und während des Saugens. Z Tierpsychol 27:553–562Google Scholar
  17. Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 163:151–165Google Scholar
  18. Heran H (1958) Die Orientierung der Bienen im Flug. Ergeb Biol 20:199–239Google Scholar
  19. Iersel JJA van, Assem J van den (1964) Aspects of orientation in the digger wasp Bembix rostrata. Anim Behav Suppl 1:145–162Google Scholar
  20. Lambin M (1987) A method for identifying the nearby spatial cues used by animals during transverse orientation. Behav Process 14:1–10Google Scholar
  21. Lehrer M (1991) Bees which turn back and look. Naturwissenschaften 78:274–276Google Scholar
  22. Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee's visual world with a third dimension. Nature 332:356–357Google Scholar
  23. Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. Z Vergl Physiol 60:82–102Google Scholar
  24. Opfinger E (1931) Über die Orientierung der Biene an der Futterquelle. Z Vergl Physiol 15:431–487Google Scholar
  25. Peckham GW, Peckham EG (1898) On the instincts and habits of the solitary wasps. Wisconsin Geol Nat Hist Surv Bull 2, Sci Ser 1:1–245 [German Transl (1904) Instinkt und Gewohnheiten der solitären Wepsen. Paul Parey, Berlin]Google Scholar
  26. Sandini G, Tistarelli M (1990) Active tracking strategy for monocular depth inference over multiple frames. IEEE Transactions on Pattern Analysis and Machine Intelligence 12:13–27Google Scholar
  27. Srinivasan MV, Lehrer M, Zhang SW, Horridge GA (1989) How honeybees measure their distance from objects of unknown size. J Comp Physiol A 165:605–613Google Scholar
  28. Srinivasan MV, Lehrer M, Horridge GA (1990) Visual figureground discrimination in the honeybee: role of motion parallax at boundaries. Proc R Soc Lon B 238:331–350Google Scholar
  29. Tinbergen N, Kruyt W (1938) Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) III. Die Bevorzugung bestimmter Wegmarken. Z Vergl Physiol 25:292–334Google Scholar
  30. Vollbehr J (1975) Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zool Jb Physiol 79:33–69Google Scholar
  31. Wagner W (1907) Psycho-biologische Untersuchungen an Hummeln. Schweizerbart-sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  32. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology Vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  33. Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353–359Google Scholar
  34. Wehner R, Lehrer M (1988) Visual spatial memory in honeybees: use of landmarks during the approach flight to a food source. In: Elsner N, Barth FG (eds) Sense organs. Thieme, Stuttgart New York, p 229Google Scholar
  35. Wehner R, Räber F (1979) Visual spatial menory in desert ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Experientia 35:1569–1571Google Scholar
  36. Wolf E (1926) Über das Heimkehrvermögen der Bienen I. Z Vergl Physiol 3:615–691Google Scholar
  37. Wolf E (1927) Über das Heimkehrvermögen der Bienen II. Z Vergl Physiol 6:221–254Google Scholar
  38. Zeil J (1989) The role of behaviour in depth information processing: orientation flights and landmark orientation in solitary wasps. In: Erber J, Menzel R, Pflüger H-J, Todt D (eds) Neural mechanisms of behavior. Thieme, Stuttgart New York, pp 236–237Google Scholar
  39. Zeil J (1993) Orientation flights of solitary wasps (Cerceris; Sphecidae, Hymenoptera): II. Similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172:207–222Google Scholar
  40. Zeil J, Kelber A (1991) Orientation flights in ground-nesting wasps and bees share a common organization. Verh Dtsch Zool Ges 84:371Google Scholar
  41. Zeil J, Wittmann D (1987) Visual orientation towards the nest in a stingless bee (Tetragonisca angustula). In: Eder J, Rembold H (eds) Chemistry and biology of social insects. J Peperny, München, pp 706–707Google Scholar
  42. Zeil J, Wittmann D (1993) Landmark orientation during the approach to the nest in the stingless bee Trigona (Tetragonisca) angustula (Apidae, Meliponinae). Insectes Sociaux (in press)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. Zeil
    • 1
  1. 1.Lehrstuhl für BiokybernetikUniversität TübingenTübingenGermany

Personalised recommendations