Mineralium Deposita

, Volume 30, Issue 2, pp 146–151 | Cite as

A volcanic-exhalative origin for the world's largest (Kalahari) Manganese field

  • D. H. Cornell
  • S. S. Schütte


The ∼ 2220 Ma Kalahari Manganese field of South Africa is the world's largest Mn resource and a major producer. Current models for its origin rely on those developed for Phanerozoic deposits, invoking a submarine redox boundary and water movements across a continental shelf, precipitating Mn oxides from the sea. Here we report the discovery of major hydrothermal alteration in the thick andesitic volcanic pile beneath the Mn ore. This and other evidence shows that the Kalahari manganese is actually a volcanic exhalative deposit, analogous in some respects to those forming at present day mid-ocean ridges. Important differences in depth and oxygen supply account for the smaller area and high grade of the Kalahari Manganese Field, compared with the widespread but thinly developed modern ocean floor Mn deposits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt, J.C. Honnorez, J. (1984) Alteration of the upper oceanic crust, DSDP site 417; mineralogy and chemistry. Contrib. Mineral. Petrol. 87:149–169Google Scholar
  2. Beukes, N.J. (1983) Palaeoenvironmental setting of iron formations in the depositional basin of the Transvaal Supergroup, South Africa. In: Trendall, A.F. Morris, A.C. (eds.) Iron formation, facts and problems. Elsevier, Amsterdam, pp. 131–209Google Scholar
  3. Beukes, N.J. Smit, C.A. (1987) New evidence for thrust faulting in Griqualand West, South Africa: implications for stratigraphy and red beds. S. Afr. J. Geol. 90:378–394Google Scholar
  4. Cannon, W.F. Force, E.R. (1983) Potential for high-grade shallow-marine manganese deposits in North America. In: Shanks, W. (ed.) Unconventional mineral deposits. Am. Inst. Mining Metall. Petroleum Eng, New York, pp. 175–190Google Scholar
  5. Cornell, D.H., Schütte, S.S., Eglington, B.L. (1995) The Ongeluk Basaltic Andesite Formation in Griqualand West, South Africa: submarine alteration in a 2220 Ma Proterozoic sea. Precambrian Res. (in press)Google Scholar
  6. De Villiers, J.E. (1983) The manganese deposits of Griqualand West, South Africa: some mineralogical aspects. Econ. Geol. 78:1108–1118Google Scholar
  7. Dixon, R.D. (1989) Sugilite and associated metamorphic silicate minerals from Wessels Mine, Kalahari Manganese Field. Geol. Surv. Bull. S. Afr. 93: 47 ppGoogle Scholar
  8. Evensen, N.M., Hamilton, P.J., O'Nions, R.K. (1978) Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 42:1199–1212Google Scholar
  9. Fleet, A.J. (1983) Hydrothermal and hydrogenous Ferro-manganese deposits: do they form a continuum? The rare earth evidence. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds.) Hydrothermal processes at seafloor spreading centers. Nato Conf. Ss. IV, vol. 12, Plenum Press, New York, pp. 535–556Google Scholar
  10. Force, E.R., Cannon, W.F. (1984) Depositional model for shallow-marine manganese deposits around black shale basins. Econ. Geol. 83:93–117Google Scholar
  11. Frakes, L.A., Bolton, B.R. (1984) Origin of manganese giants: sea level change and anoxic-oxic history. Geology 12:83–86Google Scholar
  12. Frakes, L.A., Bolton, B.R. (1992) Effects of ocean chemistry, sea level and climate on the formation of primary sedimentary manganese ore deposits. Econ. Geol. 87:1207–1217Google Scholar
  13. Grobbelaar, W.S., Beukes, N.J. (1986) The Bishop and Glossam manganese mines and the Beeshoek iron ore mine of the Postmasburg area. In: Annhaeusser, C.R., Maske, S. (eds.) Mineral Deposits of South Africa, vol. 1. Geol. Soc. S. Afr., pp. 957–961Google Scholar
  14. Hynes, A. (1980) Carbonatization and mobility of Ti, Y, and Zr in Ascot Formation metabasalts, S.E. Quebec. Contrib. Mineral. Petrol. 75:79–87Google Scholar
  15. Kleyenstüber, A.S.E. (1984) The mineralogy of the manganese-bearing Hotazel formation, of the Proterozoic Transvaal Sequence in Griqualand West, South Africa. Trans. Geol. Soc. S. Afr. 87:257–272Google Scholar
  16. Lalou, C. (1983) Genesis of ferromanganese deposits: hydrothermal origin. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds.) Hydrothermal processes at seafloor spreading centers. Nato Conf. Ss. IV, vol. 12, Plenum Press, New York, pp. 503–534Google Scholar
  17. Roy, S. (1992) Environments and processes of manganese deposition. Econ. Geol. 87:1218–1236Google Scholar
  18. Schissel, D., Aro, P. (1992) The major early Proterozoic sedimentary iron and manganese deposits and their tectonic setting. Econ. Geol. 87:1367–1374Google Scholar
  19. Schütte, S.S. (1992) Ongeluk volcanism in relation to the Kalahari Manganese Deposits. Unpublished PhD thesis, Univ. Natal, S. Afr, 255 ppGoogle Scholar
  20. Stowe, C.W., Hartnady, C.J.H., Joubert, P. (1984) Proterozoic tectonic provinces of southern Africa. Precambrian Res. 25:229–231Google Scholar
  21. Taylor, S.R., McLennan, S.M. (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 321ppGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • D. H. Cornell
    • 1
  • S. S. Schütte
    • 2
  1. 1.Geologiska Institutionen, Göteborgs UniversitetGöteborgSweden
  2. 2.Institüt für Geologische WissenschaftenHalleGermany

Personalised recommendations