, Volume 39, Issue 5, pp 329–334 | Cite as

Chromosomal localization of three human genes coding for A15, L6, and S5.7(TAPA1): all members of the transmembrane 4 superfamily of proteins

  • Kimmo I. Virtaneva
  • Nobuhiko Emi
  • John S. Marken
  • Alejandro Aruffo
  • Carol Jones
  • Nigel K. Spurr
  • Jim P. Schröder
Original Articles


The A15, L6, and S5.7(TAPA1) proteins are members of the transmembrane 4 superfamily (TM4SF). The A15 is expressed in immature human T cells and in the human brain. The MXS1(CCG-B7) gene which codes for A15 contains triplet nucleotide repeats which have been associated with neuropsychiatric diseases such as Huntington's chorea, fragile X syndrome, and myotonic dystrophy. The L6 antigen is mainly expressed in lung, breast, colon, ovarian carcinomas, and healthy epithelial tissue in humans. The S5.7(TAPA1) antigen is expressed in most human cell lines and is shown to be associated with B-cell surface molecules CD19 and Leu-13. In this study we have used interspecies specific somatic cell hybrids and human-specific cDNA probes to localize the A15 (MXS1), L6 (M3S1), and TAPA1 genes to Xq11, 3q21–25, and 11p15.5, respectively.


Ovarian Carcinoma Human Cell Line Cell Hybrid Surface Molecule cDNA Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ala-Kapee, M., Nevanlinna, H., Mali, M., Jalkanen, M., and Schröder, J. Localization of gene for human Syndecan, an intergral membrane proteoglycan and a matrix receptor to chromosome 2. Somat Cell Mol Genet 16: 501–505, 1990Google Scholar
  2. Andria, M. L., Hsieh, C.-L., Oren, R., Francke, U., and Levy, S. Genomic organization and chromosomal localization of the TAPA-1 gene. J Immunol 147: 1030–1036, 1991Google Scholar
  3. Angelisová, P., Vlček, Č., Štefanová, I., Lipoldová, M., and Hořejší, V. The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Immunogenetics 32: 281–285, 1990Google Scholar
  4. Benoit, P., Gross, M. S., Frachet, P., Frézal, J., Uzan, G., Boucheix, C., and Van Cong, N. Assignment of the human CD9 gene to chromosome 12 (region p13) by use of human specific DNA probes. Hum Genet 86: 268–272, 1991Google Scholar
  5. Boucheix, C., Benoit, P., Frachet, P., Billard, M., Worthington, R. E., Gagnon, J., and Uzan, G. Molecular cloning of the CD9 antigen. J Biol Chem 266: 117–122, 1991Google Scholar
  6. Boucheix, C., Benoit, P., Frachet, P., Billard, M., Worthington, R. E., Gagnon, J., and Uzan, G. Molecular cloning of the CD9 antigen. J Biol Chem 266: 117–122, 1991Google Scholar
  7. Bradbury, L. E., Kansas, G. S., Levy, S., Evans, R. L., and Tedder, T. F. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 14: 2841–2850, 1992Google Scholar
  8. Classon, B. J., Williams, A. F., Willis, A. C., Seed, B., and Stamenkovic, I. The primary structure of the human leukocyte antigen CD37, a species homologue of the rat MRC OX-44 antigen. J Exp Med 169: 1497–1502, 1989Google Scholar
  9. Emi, N., Kitaori, K., Seto, M., Ueda, R., Saito, H., and Takahashi, T. Isolation of a novel cDNA clone showing marked similarity to ME491/CD63 superfamily. Immunogenetics 37: 193–198, 1993Google Scholar
  10. Frézal, J. and Schinzel, A. Report of the committee on clinical disorders, chromosome aberrations and uniparental disomy. Cytogenet Cell Genet 58: 986–1052, 1991Google Scholar
  11. Fukudome, K., Furuse, M., Imai, T., Nishimura, M., Takagi, S., Hinuma, Y., and Yoshie, O. Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-1)-induced syncytium formation: altered glycosylation of C33 antigen in HTLV-1-positive T cells. J Virol 66: 1394–1401, 1992Google Scholar
  12. Gatti, R. A., Shaked, R., Mohandas, T. K., Salser, W. Human ferritin genes: chromosomal assignments and polymorphisms. Am J Hum Genet 41: 654–667, 1987Google Scholar
  13. Gaugitsch, H. W., Hofer, E., Huber, N. E., Schnabl, E., and Baumruker, T. A new superfamily of lymphoid and melanoma cell proteins with extensive homology to Schistosoma mansoni antigen Sm23. Eur J Immunol 21: 377–383, 1991Google Scholar
  14. Geurts van Kessel, A. H. M., Westerveld, A., de Groot, P. G., Meera Khan, P., and Hagemeijer, A. Regional localization of the genes coding for human ACO2, ARSA and NAGA on chromosome 22. Cytogenet Cell Genet 28: 169–172, 1980Google Scholar
  15. Glaser, T., Housman, D., Lewis, W. H., Gerhard, D., and Jones, C. A fine-structure deletion map of human chromosome 11p: analysis of J1 series hybrids. Somat Cell Mol Genet 15: 477–501, 1989Google Scholar
  16. Goodman, G. E., Hellström, I., Brodzinsky, L., Nicaise, C., Kulander, B., Hummel, D., and Hellström, K. E. Phase I trial of murine monoclonal antibody L6 in breast, colon, ovarian, and lung cancer. J Clin Oncol 8: 1083–1092, 1990Google Scholar
  17. Hotta, H., Ross, A. H., Huebner, K., Isobe, M., Wendeborn, S., Chao, M. V., Ricciardi, R. P., Tsujimoto, Y., Croce, C. M., and Koprowski, H. Molecular clonong and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res 48: 2955–2962, 1988Google Scholar
  18. Larizza, L., Rampoldi, E., Mottura, A., Doneda, L., Miggiano, V., and Barlati, S. Human fibroblasts x mouse cell hybrids, containing a human 11/X translocation, do not express human fibronectin. Cell Biol Int Rep 7: 325–332, 1983Google Scholar
  19. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harling, A. E., and Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79, 1991Google Scholar
  20. Levy, S., Nguyen, V. Q., Andria, M. L., Takahashi, S. Structure and membrane topology of TAPA-1. J Biol Chem 266: 14597–14602, 1991Google Scholar
  21. Li, S.-H., McInnis, M. G., Margolis, R. L., Antonarakis, S. E., and Ross, C. A. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics 16: 572–579, 1993Google Scholar
  22. Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G., Neville, C., Narang, M., Barceló, J., and O'Hoy, K., Leblond, S., Earle-MacDonald, J., de Jong, P. J., Wieringa, B., and Korneluk, R. G. Myotonic dystrophy mutation: an snstable CTG repeat in the 3′ untranslated region of the gene. Science 255: 1253–1255, 1992Google Scholar
  23. Marken, J. S., Schieven, G. L., Hellström, I., Hellström, K. E., and Aruffo, A. Cloning and expression of the tumor-associated antigen L6. Proc Natl Sci Sci USA 89: 3503–3507, 1992Google Scholar
  24. McAlpine, P. J., Allderdice, P. W., Cox, D. W., Simpson, N. E., McEachran, M., Komarnicki, L. The ordering of TF:CHE1:AHSG and their orientation distal to 3q21. Cytogenet Cell Genet 46: 659, 1987Google Scholar
  25. Mitelman, F., Kaneko, Y., and Trent, J.,Report of the committee on chromosome changes in neoplasia. Cytogenet Cell Genet 58: 1053–1079, 1991Google Scholar
  26. Ogawa, O., Eccles, M. R., Szeto, J., McNoe, L. A., Yun, K., Maw, M. A., Smith, P. J., and Reeve, A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilm's tumor. Nature 362: 749–751, 1993Google Scholar
  27. Oren, R., Takahashi, S., Doss, C., Levy, R., and Levy, S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 10: 4007–4015, 1990Google Scholar
  28. Pessano, S., Bottero, L., Faust, J., Massimo, T., Palumbo, A., Pegoraro, L., Lange, B., Brezin, C., Borst, J., Terhorst, C., and Rovera, G. Differentiation antigens of human hemopoietic cells: patterns of reactivity of two monoclonal antibodies. Cancer Res 43: 4812–4815, 1983Google Scholar
  29. Ping, A. J., Reeve, A. E., Law, D. J., Young, M. R., Boehnke, M., and Feinberg, A. P. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet 44: 720–723, 1989Google Scholar
  30. Rabin, M., McClelland, A., Kuhn, L., Ruddle, F. H. Regional l localization of the human transferrin receptor gene to 3q26.2-qter. Am J Hum Genet 37: 1112–1116, 1985Google Scholar
  31. Schwartz-Albiez, R., Dörken, B., Hofmann, W., and Molden-hauer, G. The B cell-associated CD37 antigen (gp 40–52): structure and subcellular expression of extensively glycosylated glycoprotein. J Immunol 140: 905–914, 1988Google Scholar
  32. Slupsky, J. R., and Seehafer, J. G., Tang, S.-C., Masellis-Smith, A., and Shaw, A. R. E. Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein IIb-IIIa complex. J Biol Chem 264: 12289–12293, 1989Google Scholar
  33. Spurr, N. K., Goodfellow, P. W., and Docherty, A. J. P. Chromosomal somal assignment of the gene encoding the human tissue inhibitor of metalloproteinases to Xp11.1–11.4. Ann Hum Genet 51: 189–194, 1987Google Scholar
  34. Swallow, D. M., Solomon, E., and Pajunen, L. Immunochemical analysis of the N-acetyl hexoaminidases in human-mouse hybrids made using a double selective system. Cytogenet Cell Genet 18: 136–148, 1977Google Scholar
  35. Szala, S., Kasai, Y., Steplewski, Z., Rodeck, U., Koprowski, H., and Linnenbach, A. J. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci USA 87: 6833–6837, 1990Google Scholar
  36. Taguchi, T., Bellacosa, A., Zhou, J.-Y., Gilbert, D. J., Lazo, P. A., Copeland, N. G., Jenkins, N. A., Tsichlis, P. N., and Testa, J. R. Chromosomal localization of the OX-44 (CD53) leukocyte antigen gene in man and rodents. Cytogenet Cell Genet 64: 217–221, 1993Google Scholar
  37. The Huntington's disease collaborative research group: a novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983, 1993Google Scholar
  38. Van Heyningen, V., and Jones, C. Report of the committee on the genetic constitution of chromosome 11. In A. J. Cuticchia, P. L. Pearson, and H. P. Klinger (eds): Chromosome Coordinating Meeting (1992). Genome Priority Reports, pp 365–401, Karger, Basel, 1993Google Scholar
  39. Verker, A. J. M. H., Pieretti, M., Sutcliffe, J. S., Fu, Y.-H., Kuhl, D. P. A., Pizzuti, A., Reiner, O., Richards, S., Victoria, M. F., and Zhang, F., Eussen, B. E, van Ommen, G.-J. B., Blonden, L. A. J.., Riggins, G. J., Chastain, J. L., Kunst, C. B., Galjaard, H., Caskey, C. T., Nelson, D. L., Oostra, B. A., and Warren, S. T. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65: 905–914, 1991Google Scholar
  40. Virtaneva, K. I., Angelisová, P., Baumruker, T., Hořejší, V., Nevanlinna, H., and Schröder, J. The genes for CD37, CD53, and R2, all members of a novel gene family, are located on different chromosomes. Immunogenetics 37: 461–465, 1993Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Kimmo I. Virtaneva
    • 1
  • Nobuhiko Emi
    • 2
  • John S. Marken
    • 3
  • Alejandro Aruffo
    • 3
  • Carol Jones
    • 4
  • Nigel K. Spurr
    • 5
  • Jim P. Schröder
    • 1
  1. 1.Department of GeneticsUniversity of HelsinkiFinland
  2. 2.First Department of Internal MedicineNagoya University School of MedicineNagoyaJapan
  3. 3.Bristol-Myers Squibb Pharmaceutical Research InstituteSeattleUSA
  4. 4.Eleanor Roosevelt InstituteDenverUSA
  5. 5.Imperial Cancer Research Fund Clare Hall LaboratoriesHertsUK

Personalised recommendations