Immunogenetics

, Volume 39, Issue 4, pp 221–229

Linkage of a new member of the lectin supergene family to chicken Mhc genes

  • Alain Bernot
  • Rima Zoorob
  • Charles Auffray
Original Articles

Abstract

With the use of tissue-specific cDNA probes, several genes, which do not correspond to the class I (B-F), class II (B-L), or class IV (B-G) genes, were detected within the cosmid clusters containing the chicken major histocompatibility genes. We isolated cDNA clones with a probe corresponding to one of them, the 17.5 gene, located between two class I genes. The 17.5.3 cDNA, isolated from a chicken spleen cDNA library, encodes a 257-residue-long protein. This sequence shows significant similarity with several members of the C-type animal lectin superfamily and is probably a type II transmembrane protein. Analysis of several cDNA clones, together with Southern blot experiments, strongly suggest that this gene belongs to a multigene family, with at least some of its members being polymorphic. Several arguments lend support to the possibility that, together with the linked Mhc genes, the 17.5 gene is part of the recently described Rfp-Y system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnstiel, M. L., Busslinger, M., and Strub, K. Transcription termination and 3′ processing: the end is in site. Cell 41: 349–359, 1985Google Scholar
  2. Briles, W. E. and McGibbon, W. H. Heterozygosity of inbred lines of chickens at two loci affecting cellular antigens. Genetics 33 (Abstract): 605, 1948Google Scholar
  3. Briles, W. E., Goto, R., Auffray, C., and Miller, M. M. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37: 408–414, 1993PubMedGoogle Scholar
  4. Bucy, R. P., Chen, C. H., and Cooper, M. D. Development of cytoplasmic CD3+/T cell receptor-negative cells in the peripheral lymphoid tissues of chickens. Eur J Immunol 20: 1345–1350, 1990Google Scholar
  5. Conrad, D. H. FcEpsilonRII/CD23: the low affinity receptor for IgE. Annu Rev Immunol 8: 623–645, 1990Google Scholar
  6. Dessen, P., Fondrat, C., Valencien, C., and Mugnier, C. BISANCE: A French service for access to biomolecular sequence databases. CABIOS 6: 355–356, 1990Google Scholar
  7. Dower, W. J., Miller, J. F., and Ragsdale, C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16: 6127–6145, 1988PubMedGoogle Scholar
  8. Drickamer, K. Two distinct classes of carbohydrate recognition domains in animal lectins. J Biol Chem 263: 9557–9560, 1988Google Scholar
  9. Drickamer, K., Dordal, M. S., and Reynolds, L. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. J Biol Chem 261: 6878–6887, 1986Google Scholar
  10. Giorda, R., Rudert, W. A., Vavassori, C., Chambers, W. H., Hiserodt, J. C., and Trucco, M. NKR-P1, a signal transduction molecule on Natural Killer cells. Science 249: 1298–1300, 1990Google Scholar
  11. Guillemot, F., Billault, A., Pourquié, O., Béhar, G., Chaussé, A. M., Zoorob, R., Kreibich, G., and Auffray, C. A molecular map of the chicken major histocompatibility complex: the class II β genes are closely linked to the class I genes and to the nucleolar organizer. EMBO J 7: 2775–2785, 1988PubMedGoogle Scholar
  12. Guillemot, F., Billault, A., and Auffray, C. Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. Proc Natl Acad Sci USA 86: 4594–4598, 1989Google Scholar
  13. Hala, K., Boyd, R., and Wick, G. Chicken major histocompatibility complex and disease. Scand J Immunol 14: 607–616, 1987Google Scholar
  14. Halberg, D. F., Wager, R. E., Farrell, D. C., Hildreth IV, J., Quesenberry, M. S., Loeb, J. A., Holland, E. C., and Drickamer K. Major and minor forms of the rat liver asialoglycoprotein receptor are independent galactose binding proteins. J Biol Chem 262: 9828–9838, 1987Google Scholar
  15. Higgins, D. G. and Sharp, P. M. Clustal: a package for performing multiple sequence alignement on a microcomputer. Gene 73: 237–244, 1988CrossRefPubMedGoogle Scholar
  16. Holland, E. C., Leung, J. O., and Drickamer, K. Rat liver asialoglycoprotein lacks a cleavable NH2-terminal signal sequence. Proc Natl Acad Sci USA 81: 7338–7342, 1984Google Scholar
  17. Houchins, J. P., Yabe, T., McSherry, C., and Bach, F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human Natural Killer cells. J Exp Med 173: 1017–1020, 1991Google Scholar
  18. Hoyle, G. W. and Hill, R. L. Molecular cloning and sequencing of a cDNA for a carbohydrate binding receptor unique to rat Kuppfer cells. J Biol Chem 263: 7487–7492, 1988Google Scholar
  19. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292, 1986CrossRefPubMedGoogle Scholar
  20. Li, H., Gyllensten, U. B., Cui, X., Saiki, R. K., Erlich, H. A., and Arnheim, N. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335: 414–417, 1988Google Scholar
  21. Lipman, W. R. and Pearson, D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448, 1988PubMedGoogle Scholar
  22. Miller, M. M., Goto, R., Zoorob, R., Auffray, C., and Briles, W. E. Regions of homology shared by RFP-Y and major histocompatibility 13 complex genes. Immunogenetics 39: 71–73, 1994PubMedGoogle Scholar
  23. Nazerian, K. and Sharma, J. M. Detection of T-cell surface antigens in a Marek's disease lymphoblastoid cell line. J Natl Cancer Inst 54: 277–279, 1975Google Scholar
  24. Okazaki, W., Witter, R. L., Romero, C., Nazerian, K., Sharma, J. M., Fadly, A., and Ewert, D. Induction of lymphoid leukosis transplantable tumours and the establishment of lymphoblastoid cell lines. Avian Path 9: 311–329, 1980Google Scholar
  25. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988PubMedGoogle Scholar
  26. Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989Google Scholar
  27. Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977PubMedGoogle Scholar
  28. Seed, B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature 329: 840–842, 1987Google Scholar
  29. Sharon, N. and Lis, H. Lectins as cell recognitiion molecules. Science 246: 227–234, 1989Google Scholar
  30. Singer, S. J., Maher, P. A., and Yaffe, M. P. On the transfer of integral proteins into membranes. Proc Natl Acad Sci USA 84: 1960–1964, 1987Google Scholar
  31. Spiess, M. and Lodish, H. F. Sequences of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc Natl Acad Sci USA 85: 6465–6469, 1985aGoogle Scholar
  32. Spiess, M., Schwartz, A. L., and Lodish, H. F. Sequence of human asialoglycoprotein receptor cDNA. J Biol Chem 260: 1979–1982, 1985bGoogle Scholar
  33. Weis, W. I., Kahn, R., Fourme, R., Drickamer, K., and Hendrickson, W. A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254: 1608–1615, 1991Google Scholar
  34. Wong, S. J., Freeman, J. D., Kelleher, C., Mager, D., and Takei, F. Ly49 multigene family. J Immunol 147: 1417–1423, 1991Google Scholar
  35. Yokoyama, W. M., Jacobs, L. B., Kanagawa, O., Shevach, E. M., and Cohen, D. I. A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J Immunol 143: 1379–1386, 1989Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Alain Bernot
    • 1
  • Rima Zoorob
    • 1
  • Charles Auffray
    • 1
  1. 1.UPR 420, Génétique Moléculaire et Biologie du Développement 7CNRSVillejuif CedexFrance

Personalised recommendations