Immunogenetics

, Volume 39, Issue 2, pp 93–98 | Cite as

Heat shock proteins transfer peptides during antigen processing and CTL priming

  • Pramod K. Srivastava
  • Heiichiro Udono
  • Nathalie E. Blachere
  • Zihai Li
Hypothesis

References

  1. Ang, D., Liberek, K., Skowyra, D., Zylicz, M., and Georgopoulos, C. Biological role and regulation of the universally conserved heat shock proteins. J Biol Chem 266: 24233–24236, 1991Google Scholar
  2. Basombrío, M. A. Search for common antigenicities among 25 sarcomas induced by methylcholanthrene. Cancer Res 30: 2458–2462, 1970Google Scholar
  3. Bevan, M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not crossreact in the cytotoxic assay. J Exp Med 143: 1283–1288, 1976Google Scholar
  4. Blachere, N. E., Udono, H., Janetzki, S., Li, Z., Heike, M. and Srivastava, P. K. Heat shock protein vaccines against cancer. J Immunotherapy, in press. 1993Google Scholar
  5. Burnet, F. M. A certain symmetry: histocompatibility antigens compared with immunocyte receptors. Nature 226: 123–126, 1970Google Scholar
  6. Cerundolo, V., Elliott, T., Elvin, J., Bastin, H., Rammensee, H. G., and Townsend, A. The binding affinity and dissociation rates of peptides for MHC class I molecules. Eur J Immunol 21: 2069–2075, 1991Google Scholar
  7. Christnick, E. R., Luscher, M. A., Barber, B. H., and Williams, D. B. Peptide-binding to MHC class I on living cells and quantitation of complexes required for CTL lysis. Nature 352: 67–70, 1991Google Scholar
  8. Darrow, T. L., Slingluff, C. L., and Siegler, H. F. The role of HLA class I antigens in recognition of melanoma cells by tumor-specific T lymphocytes: evidence for shared tumor antigens. J Immunol 142: 3329–3334, 1989Google Scholar
  9. Falk, K., Rötschke, O., and Rammensee, H. G. Cellular peptide composition governed by MHC class I molecules. Nature 348: 248–251, 1990Google Scholar
  10. Feldweg, A. M. and Srivastava, P. K. Molecular heterogeneity of tumor rejection antigen/heat shock protein gp96. J Cell Biochem 170: 108, 1993Google Scholar
  11. Flajnik, M. F., Canel, C., Kramer, J., and Kasahara, M. Which came first, MHC class I or class II? Immunogenetics 33: 295–301, 1991 aGoogle Scholar
  12. Flajnik, M. F., Canel, C., Kramer, J., and Kasahara, M. Evolution of the MHC: molecular cloning of MHC class I from the amphibian Xenopus, Proc Natl Acad Sci USA 88: 537–541, 1991 bGoogle Scholar
  13. Flynn, G. C., Chappell, T. G., and Rothman, J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–388, 1989Google Scholar
  14. Flynn, G. C., Pohl, J., Flocco, M. T., and Rothman, J. E. Peptide binding specificity of the molecular chaperone BiP. Nature 353: 726–730, 1991Google Scholar
  15. Forsdyke, D. R. Relationship of X chromosome dosage compensation t to intracellular self/non self discrimination. J Theor Biol, in press, 1993 aGoogle Scholar
  16. Forsdyke, D. R. The heat shock response and the molecular basis of genetic dominance. J Theor Biol, in press, 1993 bGoogle Scholar
  17. Globerson, A. and Feldman, M. Antigenic specificity of benzo(a)pyrene induced sarcomas. J Natl Cancer Inst 32: 1229–1243, 1964Google Scholar
  18. Glynne, R., Powis, S. H., Beck, S., Kelly, A., Kerr, L. A., and Trowsdale, J. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353: 357–360, 1991Google Scholar
  19. Gooding, L. R. and Edwards, C.B. H-2 antigen requirement in the in vitro induction of SV40-specific cytotoxic T lymphocytes. J Immunol 124: 1258–1262, 1980Google Scholar
  20. Gooding, L. R. and Wold, W. S. M. Molecular mechanisms by which adenoviruses counteract anti-viral immune defenses. CRC Crit Rev Immunol 10: 53–71, 1989Google Scholar
  21. Griem, P., Wallny, P., Falk, K., Rötzschke, O., Arnold, B., Schonrich, G., Hämmerling, G., and Rammensee, H. G. Uneven distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell 65: 633–640, 1991Google Scholar
  22. Gross, L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3: 323–326, 1943Google Scholar
  23. Kawakami, Y., Zakut, R., Topalian, S. L., Stotter, H., and Rosenberg, S. A. Shared human melanoma antigens. Recognition by tumor-infiltrating lymphocytes in HLA-A2.1-transfected melanomas. J Immunol 148: 638–643, 1992Google Scholar
  24. Kelly, A., Powis, S., Glynne, R., Radley, E., Beck, S., and Trowsdale, J. Second proteasome-related gene in the human MHC class II region. Nature 353: 667–668, 1991Google Scholar
  25. Klein, G., Sjogren, H. O., Klein, E., and Hellstrom, K. E. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res 20: 1561–1572, 1960Google Scholar
  26. Lakey, E. K., Margoliash, E., and Pierce, S. K. Identification of a peptide binding protein that plays a role in antigen presentation. Proc Natl Acad Sci USA 84: 1659–1663, 1987Google Scholar
  27. Li, Z. and Srivastava, P. K. Tumor rejection antigen gp96/grp94 is an ATPase: Implications for antigen presentation and protein folding. EMBO J 12: 3143–3151, 1993Google Scholar
  28. Lindquist, S. and Craig, E. A. The heat shock proteins. Annu Rev Genet 22: 631–677, 1988CrossRefPubMedGoogle Scholar
  29. Moore, S. K., Rijli, F., and Appella, E. Characterization of the mouse 84 kD heat shock protein gene family. DNA Cell Biol 9: 387–400, 1990Google Scholar
  30. Monaco, J. and McDevitt, H. O. The LMP antigens: a stable MHC controlled multi sub unit protein complex. Hum Immunol 15: 416–426, 1986Google Scholar
  31. Oettgen, H. F. and Old, L. J. The historu of cancer immunotherapy. In V. T. De Vita, S. A. Hellman, and S. A. Rosenberg (eds): Biological Therapy of Cancer, pp 87–119, J. B. Lippincott, Philadelphia, 1991Google Scholar
  32. Old, L. J., Boyse, E. A., Clarke, D. A., and Carswell, E. A. Antigenic properties of chemically induced tumors. Ann NY Acad Sci 101: 80–106, 1962Google Scholar
  33. Palladino, M. A., Srivastava, P. K., Oettgen, H. F., and DeLeo, A. B. Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas. Cancer Res 47: 5074–5079, 1987Google Scholar
  34. Pfeifer, J. D., Wick, M. J., Roberts, R. L., Findlay, K., Normark, S. J., and Harding, C. V. Phagocytic processing for bacterial antigens for class I MHC presentation to T cells. Nature 361: 359–362, 1993Google Scholar
  35. Prehn, R. and Main, J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18: 769–778, 1957Google Scholar
  36. Raychaudhuri, S. and Morrow, W. J. W. Can soluble antigens induce CD8+ T cell response? A paradox revisited. Immunol Today 14: 344–348, 1993Google Scholar
  37. Rötzschke, O., Falk, K., Deres, K., Schild, H., Norda, M., Metzger, J., Jung, G., and Rammensee, H. G. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348: 252–254, 1990Google Scholar
  38. Rötzschke, O., and Falk, K. Naturally occuring peptide antigens derived from the MHC class I-restricted processing pathway. Immunol Today 12: 447–455, 1991Google Scholar
  39. Rötzschke, O., Falk, K., Faath, S., and Rammensee, H. G. On the nature of proteins involved in T-cell alloreactivity. J Exp Med 174: 1059–1071, 1991Google Scholar
  40. Srivastava, P. K., and Das, M. R. The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int J Cancer 33: 417–422, 1984Google Scholar
  41. Srivastava, P. K. and Heike, M. Tumor-specific immunogenicity of stress-—induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin Immunol 3: 57–64, 1991Google Scholar
  42. Srivastava, P. K. and Maki, R. G. Stress-induced proteins in immune response to cancer. Curr Top Microbiol Immunol 167: 109–123, 1991Google Scholar
  43. Srivastava, P. K. and Old, L. J. Individually distinct transplantation antigens of chemically induced mouse tumors. Immunol Today 9: 78–83, 1988Google Scholar
  44. Srivastava, P. K., De Leo, A. B., and Old, L. J. Tumor rejection antigens of chemically induced tumors of inbred mice. Proc Natl Acad Sci 83: 3407–3807, 1986Google Scholar
  45. Srivastava, P. K., Chen, Y. T., and Old, L. J. 5′ Structural analysis of genes encoding polymorphic antigens of chemically induced tumors. Proc Natl Acad Sci USA 84: 3804–3807, 1987Google Scholar
  46. Tanaka, K., Yoshioka, T., Bieberich, C. and Jay, G. Role of the MHC class I antigens in tumor growth and metastasis. Annu Rev Immunol 6: 359–380, 1988Google Scholar
  47. Townsend, A. and Bodner, H. Antigen presentation by class I-restricted T lymphocytes. Annu Rev Immunol 7: 601–624, 1989PubMedGoogle Scholar
  48. Udono, H. and Srivastava, P. K. Heat shock protein 70-associated peptides elicit cancer-specific immunity. J Exp Med 178: 1391–1396, 1993Google Scholar
  49. Udono, H., Levey, D. L., and Srivastava, P. K. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes naive CD8+ T cells in vivo. Proc Natl Acad Sci USA: in press, 1994Google Scholar
  50. Ullrich, S. J., Robinson, E. A., Law, L. W., Willingham, M., and Appella, E. A mouse tumor-specific transplantation antigen is a heat-shock related protein. Proc Natl Acad Sci USA 83: 3121–3125, 1986Google Scholar
  51. Von Boehmer, H. Developmental biology of T cells in T-cell receptor transgenic mice. Annu Rev Immunol 8: 531–556, 1990Google Scholar
  52. Zinkernagel, R. and Doherty, P. Restriction of in vitro T-cell mediated cutotoxicity in lymphocytic choriomeningitis within a syngeneic or semi-allogeneic system. Nature 248: 701–702, 1974PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Pramod K. Srivastava
    • 1
  • Heiichiro Udono
    • 1
  • Nathalie E. Blachere
    • 1
  • Zihai Li
    • 1
  1. 1.Department of PharmacologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations