Advertisement

Biometals

, Volume 9, Issue 1, pp 84–90 | Cite as

The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants

  • Udo W. Stephan
  • Ilka Schmidke
  • Vincent W. Stephan
  • Günter Scholz
Research Papers

Abstract

The non-proteinogenic amino acid nicotianamine (NA) is ubiquitous among plants. In meristematic tissues it reaches concentrations of about 400μmol (g fresh weight)−1. NA forms complexes, among others, with the metal micronutrients (MN) copper, zinc, iron and manganese (logKMeNA 18.6-8.8). Calculations of the dissociation curves of the metal-NA complexes based on the complex formation constants and on the acid dissociation constants of NA revealed their stability at the neutral or weak alkaline pH of cytoplasm and sieve tube sap. For the Mn-NA complex, dissociation begins at about pH 6.5, for all others dissociation occurs at more acid pHs. Thus, metal-NA complexes could theoretically persist also in the apoplasm and in xylem sap. The octanol water partition coefficient of NA is about 1 and those of its metal complexes are in the range of 0.3–0.4. The reason for this shift is perhaps the negative charge of the complexes. The higher lipophilicity of the free NA indicates that the NA supply to sites of requirement is faster than the removal of the complexes as long as membranes are an integral part of the transport paths. Changing phloem transport rates of MN-NA complexes by manipulation of the cotyledon apoplasm of Ricinus commuais L. suggest a competition of MN for NA at the site(s) of phloem loading. Thus, NA could control MN transport via phloem including recirculation.

Keywords

chelation metal complex stability metal micronutrients nicotianamine phloem transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderegg G, Ripperger H. 1989 Correlation between metal complex formation and biological activity of nicotianamine analogues. J Chem Soc Chem Commun 1989, 647–650.Google Scholar
  2. Becker R, Fritz E, Manteuffel R. 1995 Subcellular localization and characterization of excessive iron in the nicotianamine-less tomato mutant chloronerva. Plant Physiol, 108, 269–275.Google Scholar
  3. Beneš I, Schreiber K, Ripperger H, Kircheiss A. 1983 Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39, 261–262.Google Scholar
  4. Bromilow RH. 1994 Transport kinetics agrochemicals. Pestic Sci 42, 249–251.Google Scholar
  5. Budčšínský M, Budzikiewicz H, Procházka Ž, et al. 1980 Nicotianamine, a possible phytosiderophore of general occurrence. Phytochemistry 19, 2295–2297.Google Scholar
  6. Fujuta T. Isawa J, Hansch C. 1964 A new substituent constant, β, derived from partition coefficients. J Am Chem Soc 86, 5175–5180.Google Scholar
  7. Hoffmann B, Plänker R, Mengel K. 1992 Measurement of the pH in the apoplast of sunflower leaves by means of fluorescence. Physiol Plant 84, 146–153.Google Scholar
  8. Irving H, Williams RJP. 1953 The stability of transition-metal complexes. J Chem Soc 1953, 3192–3210.Google Scholar
  9. Kleier DA. 1988 Phloem mobility of xenobiotics. I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol 86, 803–810.Google Scholar
  10. Kristensen I, Larsen PO. 1974 Azetidine-2-carboxylic acid derivates from seeds of Fagus silvatica L. and a revised structure for nicotianamine. Phytochemistry 13, 2791–2798.Google Scholar
  11. Noma M, Noguchi M, Tamaki E. 1971 A new amino acid, nicotianamine, from tobacco leaves. Tetrahedron Lett 22, 2017–2020.Google Scholar
  12. O'Sullivan WJ 1972 Stability constants of metal complexes. In: Dawson RM, Elliot DC, Elliot WH, Jones KM, eds. Data for Biochemical Research. Oxford: Oxford University Press; 423–434.Google Scholar
  13. Pich A, Scholz G, Seifert K. 1991 Effect of nicotianamine on iron uptake and citrate accumulation in two genotypes of tomato, Lycopersicon esculentum Mill. J Plant Physiol 137, 323–326.Google Scholar
  14. Pich A, Scholz G, Stephan UW. 1994 Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil 161, 189–196.Google Scholar
  15. Procházka Ž, Rudolph A. 1988 Optimierung der Synthese von Nicotianamin aus l-Azetidin-2-carbonsäure. Z Chem 28, 336.Google Scholar
  16. Procházka Ž, Scholz G. 1984 Nicotianamine, the ‘normalizing factor’ for the auxotroph tomato mutant Chloronerva; a representative of a new class of plant effectors. Experientia 40, 794–801.Google Scholar
  17. Ripperger H, Faust J, Scholz G. 1982 Synthesis and biological activity of (+)-nicotianamine. Phytochemistry 21, 1785–1786.Google Scholar
  18. Rudolph A, Becker R, Scholz G, et al. 1985 The occurrence of the amino acid nicotinamine in plants and microorganisms. A reinvestigation. Biochem Physiol Pflanzen 180, 557–563.Google Scholar
  19. Schmidke I, Stephan UW. 1995 Transport of metal micronutrients in the phloem of castor bean seedlings (Ricinus communis L.). Physiol Plant, 94, in press.Google Scholar
  20. Schobert C, Komor E. 1989 The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap. Planta 177, 342–349.Google Scholar
  21. Scholz G. 1965 Über Aufnahme, Verteilung und Wirkung von Eisenchelat bei einer chlorotischen Tomatenmutante. Kulturpflanze 13, 239–245.Google Scholar
  22. Scholz G. 1967 Physiologische Untersuchungen an der Mutante chloronerva von Lycopersicon esculentum Mill. 2. Mitteilung. Quantitative Aspekte der Eisenaufnahme und verteilung und deren Beziehung zur ‘phänotypischen Normalisierung’. Kulturpflanze 15, 255–266.Google Scholar
  23. Scholz G. 1989 Effect of nicotianamine on iron re-mobilization in de-rooted tomato seedlings. Biol Met 2, 89–91.Google Scholar
  24. Scholz G, Becker R, Pich A, Stephan UW. 1992 Nicotianamine - a common constituent of strategies I and II of iron acquisition by plants. J Plant Nutr 15, 1647–1665.Google Scholar
  25. Scholz G, Becker R, Stephan UW, Rudolph A, Pich A 1988a The regulation of iron uptake and possible functions of nicotianamine in higher plants. Biochem Physiol Pflanzen 183, 257–269.Google Scholar
  26. Scholz G, Faust J, Ripperger H, Schreiber K. 1988b Structure-function relationship of nicotianamine analogues. Phytochemistry 27, 2749–2754.Google Scholar
  27. Schreiber K. 1986 Identification and characterization of an endogenous cytometallophore of general distribution in plants. Pure Appl Chem 58, 745–752.Google Scholar
  28. Sillén LG, nMartell AE. 1964 Stability Constants of Metal Ion Complexes. London: Burlington House Special Publication 17.Google Scholar
  29. Stephan UW. 1995 The plant-endogenous Fe(II)-chelator nicotianamine restricts the ferrochelatase activity of tomato chloroplasts. J Exp Bot, 46, 531–537.Google Scholar
  30. Stephan UW, Grün M. 1989 Physiological disorders of the nicotianamine-auxotroph tomato mutant chloronerva at different levels of iron nutrition. II. Iron deficiency response and heavy metal metabolism. Biochem Physiol Pflanzen 185, 189–200.Google Scholar
  31. Stephan UW, Schmidke I, Pich A. 1994 Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant Soil 165, 181–188.Google Scholar
  32. Stephan UW, Scholz G. 1993 Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88, 522–529.Google Scholar
  33. Stephan UW, Scholz G, Rudolph A. 1990 Distribution of nicotianamine, a presumed symplast iron transporter, in different organs of sunflower and of a tomato wild type and its mutant chloronerva. Biochem Physiol Pflanzen 186, 81–88.Google Scholar

Copyright information

© Rapid Science Publishers 1996

Authors and Affiliations

  • Udo W. Stephan
    • 1
  • Ilka Schmidke
    • 1
  • Vincent W. Stephan
    • 1
    • 2
  • Günter Scholz
    • 1
  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany
  2. 2.Martin-Luther-Universität Halle-Wittenberg, Fachbereich PhysikHalleGermany

Personalised recommendations