Experiments in Fluids

, Volume 8, Issue 5, pp 241–248 | Cite as

Interaction of a normal shock wave with a compressible turbulent flow

  • J. Keller
  • W. Merzkirch


A speckle photographic method, which is sensitive to changes of gradients in fluid density, is applied for analyzing a compressible turbulent air flow with density fluctuations. Spatial correlation coefficients, turbulent length scales, and energy spectra are determined under the assumption of homogeneous isotropic turbulence. The experiments are performed in a shock tube where the flow is passed through a turbulence grid. Measurements are taken before and after the turbulent regime interacts with the normal shock wave reflected from the tube's end wall. Amplification of the turbulence intensity by the shock interaction process is verified quantitatively and is shown to be restricted to the lower wave numbers in the spectrum.


Shock Wave Turbulence Intensity Shock Tube Density Fluctuation Isotropic Turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anyiwo, J. C.; Bushnell, D. M. 1982: Turbulence amplification in shock-wave boundary-layer interactions. AIAA J. 20, 893–899Google Scholar
  2. Benay, R.; Coët, M. C.; Délery, J. 1987: Validation of turbulence models applied to transonic shock-wave/boundary-layer interaction. Rech. Aérosp. 3, 1–16Google Scholar
  3. Chandrasekhar, S. 1951: The fluctuations of density in isotropic turbulence. Proc. Roy. Soc. London Ser. A 210, 18–25Google Scholar
  4. Erbeck, R.; Merzkirch, W. 1988: Speckle photographic measurement of turbulence in an air stream with fluctuating temperature. Exp. Fluids 6, 89–93Google Scholar
  5. Hesselink, L.; Sturtevant, B. 1988: Propagation of weak shocks through a random medium. J. Fluid Mech. 196, 513–553Google Scholar
  6. Hinze, J. O. 1975: Turbulence, 2nd edn. New York: McGraw-HillGoogle Scholar
  7. Keller, J. 1989: Statistische Turbulenzanalyse isotroper Dichtefelder unter Anwendung der Specklephotographie. Dissertation, Universität EssenGoogle Scholar
  8. Kuntz, D. W.; Amatucci, V. A.; Addy, A. L. 1987: Turbulent boundary-layer properties down-stream of the shock-wave/boundary-layer interaction. AIAA J. 25, 668–675Google Scholar
  9. Ribner, H. S. 1987: Spectra of noise and amplified turbulence emanating from shock-turbulence interaction. AIAA J. 25, 436–442Google Scholar
  10. Rotta, J. C. 1972: Turbulente Strömungen. Teubner, StuttgartGoogle Scholar
  11. Trolier, J.; Duffy, R. E. 1985: Turbulence measurements in shock-induced flows. AIAA J. 23, 1172–1178Google Scholar
  12. Uberoi, M. S.; Kovasznay, L. S. G. 1955: Analysis of turbulent density fluctuations by the shadow method. J. Appl. Phys. 26, 19–24Google Scholar
  13. Wernekinck, U.; Merzkirch, W. 1987: Speckle photography of spatially extended refractive-index fields. Appl. Opt. 26, 31–32Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Keller
    • 1
  • W. Merzkirch
    • 1
  1. 1.Lehrstuhl für Strömungslehre, Universität EssenEssenF.R.Germany

Personalised recommendations