Advertisement

International Orthopaedics

, Volume 15, Issue 4, pp 325–329 | Cite as

Neuroendocrine peptides in bone

  • A. Bjurholm
Article

Summary

A method for demineralization of bone, preserving the antigenicity of neuroactive peptides, was developed. In all parts of rat long bones, nerves immunoreactive to substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and tyrosine hydroxylase (TH) were detected after immunohistochemical staining. The majority of nerves were vascular, although several non-vascular endings were observed at the growth plate and amidst marrow cells. An abundance of nerves were demonstrated near the epiphyseal plate and in the periosteum, regions of high osteogenic activity. The occurrence of different nerve types was analyzed at different stages of heterotopic osteogenesis, induced by allogeneic bone matrix. Nerve fibres immunoreactive to SP, CGRP, NPY and TH occurred amidst differentiating chondroblastic cells in the second week. They gradually increased in number during the ensuing eight weeks. In an in vitro study of osteoblastic cells (UMR 106-01, ROS 17/2.8, Saos-2, MC3T3-E1) receptors to CGRP, VIP, noradrenaline (NA) and NPY were demonstrated as assessed by analysis of cyclic AMP formation. In UMR cells, NPY inhibited the effects of NA and parathyroid hormone (PTH), which is the first demonstration of a receptor interaction between a local neuropeptide and a systemic calcium regulating hormone. The combined findings indicate a neuroendocrine influence on bone physiology.

Keywords

Tyrosine Hydroxylase Vasoactive Intestinal Polypeptide Parmi Epiphyseal Plate Diver Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Une méthode de déminéralisation de l'os, préservant l'antigénicité des peptides neuro-actifs, a été mise au point. Après coloration immuno-histochimique, on a mis en évidence, à tous les niveaux des os longs du rat, des nerfs immuno-réactifs à la substance P (SP), à la calcitonine peptide «gene-related» (CPGR), au polypeptide intestinal vaso-moteur (PIV), au neuropeptide Y (NPY), à la tyrosine hydroxylase (TH) et à l'interleukine 1 (IL-1). La majorité des nerfs sont vascularisés, bien que nombre de terminaisons non vascularisées aient été observées au niveau du cartilage de croissance et parmi les cellules de la moelle. On a montré la présence d'un grand nombre de fibres nerveuses à proximité de la plaque épiphysaire et dans le périoste, c'est à dire dans les régions d'importante activité ostéogénique. La fréquence des divers types de nerfs a été étudiée aux différentes étapes de l'ostéogénèse hétérotopique induite par la matrice osseuse allogénique. Les fibres nerveuses immunoréactives à SP, CPGR, NPY, TH et IL-1 apparaissent parmi les cellules chondroblastiques en voie de différenciation au cours de la deuxième semaine. Leur nombre augmente progressivement pendant les huit semaines suivantes. Dans une étude in vitro des cellules ostéoblastiques (UMR 106-01, ROS 17/2.8, Saos-2), des récepteurs de CPGR, PIV, noradrénaline (NA) et NPY ont pu être mis en évidence par l'analyse de la formation de l'AMP cyclique. L'action de l'IL-1 n'a pas été étudiée. Dans les cellules UMR, le NPY inhibe les effets de la NA et de l'hormone parathyroïdienne, ce qui est la première démonstration de l'interaction entre un neuro-peptide local et une hormone réglant le métabolisme systémique du calcium. Cet ensemble de constatations est en faveur d'une influence neuro-endocrinienne sur la physiologie osseuse et éventuellement aussi sur le développement du squelette.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bjurholm A, Kreicbergs A, Ahmed M, Schultzberg M (1990) Noradrenergic and peptidergic nerves in the synovial membrane. Arthritis & Rheum 33: 859–865Google Scholar
  2. 2.
    Bjurholm A, Kreicbergs A, Schultzberg M (1989) Fixation and demineralization of bone tissue for immunohistochemical staining of neuropeptides. Cacif Tissue Int 45: 227–231Google Scholar
  3. 3.
    Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M (1988) Substance P- and CGRP-immunoreactive nerves in bone. Peptides 9: 165–171CrossRefPubMedGoogle Scholar
  4. 4.
    Bjurholm A, Kreicbergs A, Terenius L, Goldstein M, Schultzberg M (1988) Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptideimmunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 25: 119–125Google Scholar
  5. 5.
    Bjurholm A, Kreicbergs A, Dahlberg L, Schultzberg M (1990) The occurrence of neuropeptides at different stages of heterotopic bone formation. Bone Miner 10: 95–107CrossRefPubMedGoogle Scholar
  6. 6.
    Bjurholm A, Kreicbergs A, Schultzberg M, Lerner UH (1988) Parathyroid hormone- and Noradrenaline-induced enhancement of cyclic AMP in a cloned osteogenic sarcoma cell line (UMR 106) is inhibited by Neuropeptide Y. Acta Phys Scand 134: 451–452Google Scholar
  7. 7.
    [Reference deleted]Google Scholar
  8. 8.
    Coons AH (1958) Fluorescent antibody method. In: Danielli F (ed) General cytochemical methods. Academic Press, New YorkGoogle Scholar
  9. 9.
    McCredie J (1974) Embryonic neuropathy: a hypothesis of neural crest injury as the pathogenesis of congenital malformations. Med J Aust 1: 159–163Google Scholar
  10. 10.
    Dietz FR (1989) Effect of denervation on limb growth. J Orthop Res 7: 292–303Google Scholar
  11. 11.
    Drinker CK, Drinker KR (1916) A method for maintaining artificial circulation through the tibia of the dog, with a demonstration of the vasomotor control of the marrow vessels. Am J Physiol 40: 514–521Google Scholar
  12. 12.
    Falck B, Hillarp N-Å, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds with formaldehyde. J Histochem Cytochem 10: 348–354Google Scholar
  13. 13.
    Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowka JA, Livnat S (1987) Noradrenergic sympathetic neural interactions with the immune system: Structure and function. Immunol Rev 100: 225–260Google Scholar
  14. 14.
    Freehafer AA, Mast WA (1965) Lower extremity fractures in patients with spinal-cord injury. J Bone Jt Surg 47: 683–694Google Scholar
  15. 15.
    Gillespie JA (1963) The nature of bone changes associated with nerve injuries and disuse. J Bone Jt Surg 36: 464–473Google Scholar
  16. 16.
    Hardy AG, Dickson JW (1963) Pathological ossification in traumatic paraplegia. J Bone Jt Surg 45: 76–87Google Scholar
  17. 17.
    Hohmann EL, Levine L, Tashjian Jr AH (1983) Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3′,5′ monophosphate-dependant mechanism. Endocrinol 112: 1233–1239Google Scholar
  18. 18.
    Hohmann EL, Tashjian Jr AH (1984) Functional receptors for vasoactive intestinal peptide on human osteosarcoma cells. Endocrinol 114: 1321–1327Google Scholar
  19. 19.
    Lundberg JM, Hökfelt T, Schultzberg M, Uvnäs-Wallensten K, Köhler C, Said SI (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurones of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neurosci 4: 1539–1559CrossRefPubMedGoogle Scholar
  20. 20.
    Lundberg JM, Terenius L, Hökfelt T, Martling CR, Tatemoto K, Mutt V, Polak J, Bloom S, Goldstein M (1982) Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurones and effects of NPY on sympathetic function. Acta Phys Scand 116: 477–480Google Scholar
  21. 21.
    Lundberg JM, Hökfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurones-functional and pharmacological implications. In: Hökfelt T, Fuxe K, Pernow B (eds) Progress in brain research. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Michelangeli VP, Findlay DM, Fletcher A, Martin TJ (1986) Calcitonin generalated peptide (CGRP) acts independently of calcitonin on cyclic AMP formation in clonal osteogenic sarcoma cells. Calcif Tissue Int 39: 44–48Google Scholar
  23. 23.
    Miller MR, Kasahara M (1963) Observations on the innervation of the human long bones. Anat Rec 145: 13–23Google Scholar
  24. 24.
    Roberts WJ, Elardo SM (1985) Sympathetic activation of A-delta nociceptors. Somatosens Res 3: 33–44Google Scholar
  25. 25.
    Roos BA, Fischer JA, Pignat W, Atander CB, Raisz LG (1986) Evaluation of the in vivo and in vitro calcium-regulating actions of non-calcitonin peptides produced via calcitonin gene expression. Endocrinol 118: 46–51Google Scholar
  26. 26.
    D'Sousa M, MacIntyre I, Girgis SI, Mundy GR (1986) Human synthetic calcitonin gene-related peptide inhibits bone resorption. Endocrinol 119: 58–61Google Scholar
  27. 27.
    Sternberger LA (1969) Immunocytochemistry. Wiley, New YorkGoogle Scholar
  28. 28.
    Tippins JR, Morris HR, Panico M, Etienne T, Bevis P, Girgis S, MacIntyre I, Azria M, Attinger M (1984) The myotropic and plasma calcium-modulating effects of calcitonin gene-related peptide (CGRP). Neuroept 4: 425–434Google Scholar
  29. 29.
    Trotman NM, Kelly WD (1963) The effect of sympathectomy on blood flow to bone. J Am Med Assoc 183: 121–122Google Scholar
  30. 30.
    Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Rel Res 53: 243–283Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Bjurholm
    • 1
  1. 1.Department of OrthopaedicsKarolinska InstituteStockholmSweden

Personalised recommendations