Anatomy and Embryology

, Volume 193, Issue 5, pp 505–513 | Cite as

Chondroid tissue in the early facial morphogenesis of the chick embryo

  • B. Lengelé
  • J. Schowing
  • A. Dhem
Original Article

Abstract

The calcified tissues involved in the early morphogenesis of the so-called intramembranous bones of the facial skeleton were studied by microradiographic and histological techniques in 22 chick embryos at the 9th, 12th and 14 th days of incubation. On the 9th day, the bones of the upper face and palatal vault are made up of thin sheets of chondroid tissue, deposited in their respective mesenchymal condensations. Woven and lamellar bone formation subsequently takes place in each of them from the 12th day of incubation, mainly on the external side of their chondroid primordia. The same phenomena occur in the lower facial and mandibular bones. These facts indicate that the primitive facial desmocranium of the chick embryo, which is classically considered to be formed by intramembranous ossification, first consists of chondroid tissue. As in the cranial vault, this tissue thus represents the initial modality of the skeletogenic differentiation within the avian facial mesenchyme.

Key words

Chondroid tissue Facial bones Intramembranous ossification Microradiograph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan JH, Scott J (1974) Osteochondroma of the mandible. Oral Surg Oral Med Pathol 37: 556–565Google Scholar
  2. Bab I, Howlett CR, Ashton BA, Owen ME (1984) Ultrastructure of bone and cartilage formed in vivo in diffusion chambers. Clin Orthop 187: 243–254Google Scholar
  3. Beer de GR (1937) The development of the vertebrate skull. Clarendon Press, OxfordGoogle Scholar
  4. Beresford A (1981) Chondroid bone, secondary cartilage and metaplasia. Urban & Schwarzenberg, Baltimore MunichGoogle Scholar
  5. Bernard G, Pearse D (1969) An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125: 271–290Google Scholar
  6. Bloom W, Fawcett DW (1986) A textbook of histology, 11th edn. Saunders, Philadelphia London TorontoGoogle Scholar
  7. Brock J (1876) Über die Entwicklung des Unterkiefers der Säugetiere. Z Wiss Zool 27: 287–318Google Scholar
  8. Dhem A, Goret-Nicaise M, Lengelé B (1991) Contribution to the study of skeletal growth. In: Dixon A, Sarnat B, Hoyte DAN (eds) Fundamentals of bone growth: methodology and applications. CRC Press, Boca Raton Ann Arbor Boston London, pp 3–19Google Scholar
  9. Enlow DH (1975) Handbook of facial growth. Saunders, Philadelphia London TorontoGoogle Scholar
  10. Gaupp E (1907) Demonstration von Präparaten, betreffend Knorpelbildung in Deckknochen. Verh Anat Ges 21: 251–252Google Scholar
  11. Gegenbaur C (1867) Ueber primäre und secundäre Knochenbildung mit besonderer Beziehung auf die Lehre vom Primordialcranium. Jena Z Med Naturwiss 3: 54–73Google Scholar
  12. Goret-Nicaise M (1984) Identification of collagen type I and II in chondroid tissue. Calcif Tissue Int 36: 382–389Google Scholar
  13. Goret-Nicaise M, Dhem A (1982) Presence of chondroid tissue in the symphyseal region of the growing human mandible. Acta Anat 113: 189–195Google Scholar
  14. Goret-Nicaise M, Dhem A (1985) Comparison of calcium contents of different tissues present in the human mandible. Acta Anat 124: 167–172Google Scholar
  15. Goret-Nicaise M, Dhem A (1987) Electron microscopic study of chondroid tissue in cat mandible. Calcif Tissue Int 40: 219–223Google Scholar
  16. Goret-Nicaise M, Lengelé B, Dhem A (1984) The function of Meckel's and secondary cartilages in the histomorphogenesis of the cat's mandibular symphysis. Arch Anat Microsc Morphol 73: 291–303Google Scholar
  17. Goret-Nicaise M, Manzanares MC, Bulpa P, Nolmans E, Dhem A (1988) Calcified tissues involved in the ontogenesis of the cranial vault. Anat Embryol 178: 399–406Google Scholar
  18. Gray H (1973) Gray's anatomy, 35th edn. Warwick R, William PL (eds). Longman, EdinburghGoogle Scholar
  19. Hall BK (1967) The formation of adventitious cartilage by membrane bones under the influence of mechanical stimulation applied in vivo. Life Sci 6: 663–667Google Scholar
  20. Hall BK (1969) Hypoxia and differentiation of cartilage and bone from common germinal cells in vitro. Life Sci 8: 553–558Google Scholar
  21. Hall BK (1971a) Histogenesis and morphogenesis of bone. Clin Orthop 74: 249–268Google Scholar
  22. Hall BK (1971b) Calcification of cartilage formed on avian membrane bone. Clin Orthop 78: 182–190Google Scholar
  23. Hall BK (1972) Immobiliz ation and cartilage transformation into bone in the embryonic chick. Anat Rec 173: 391–404Google Scholar
  24. Hall BK (1975) Evolutionary consequences of skeletal differentiation. Am Zool 15: 329–350Google Scholar
  25. Hall BK, Hanken J (1985) Repair of fractured lower jaws in the spotter salamander: do amphibians form secondary cartilage? J Exp Zool 223: 359–368Google Scholar
  26. Huysseune A, Verraes W (1986) Chondroid bone on the upper pharyngeal jaws and neurocranial base in the adult fish Astatotilapia elegans. Am J Anat 177: 527–535Google Scholar
  27. Irwin CR, Ferguson HWJ (1986) Fracture repair of reptilian dermal bone: can reptiles form secondary cartilages? J Anat 146: 53–64Google Scholar
  28. Lengele B, Schowing J, Dhem A (1990) Early development of the primitive cranial vault in the chick embryo. J Craniofac Genet Dev Biol 10: 103–112Google Scholar
  29. Manzanares MC, Goret-Nicaise M, Dhem A (1986) Participation of chondroid tissue in the human growing skeleton. Arch Biol Med Exp (Santiago) 97 [Suppl 1]: 71Google Scholar
  30. Manzanares MC, Goret-Nicaise M, Dhem A (1988) Metopic sutural closure in the human skull. J Anat 161: 203–215Google Scholar
  31. Moss ML (1960) Osteogenesis and repair of acellular teleost bone. Anat Rec 136: 246–247Google Scholar
  32. Moss ML (1964) The phylogeny of mineralized tissues. Int Rev Gen Exp Zool 1: 297–331Google Scholar
  33. Moss ML, Salentijn L (1969) The primary role of functional matrices in facial growth. Am J Orthod 55: 566–577Google Scholar
  34. Murray PDF (1957) Cartilage and bone, a problem in tissue differentiation. Aust J Sci 19: 65–73Google Scholar
  35. Murray PDF (1963) Adventitious (secondary) cartilage in the chick embryo and the development of certain bones and articulations of the chick skull. Aust J Zool 11: 368–430Google Scholar
  36. Murray PDF, Smiles M (1965) Factors of evocation of adventitious (secondary) cartilage in the chick embryo. Aust J Zool 13: 351–381Google Scholar
  37. Orvig T (1951) Histological studies of placoderms and fossil elasmobranchs. I. The endoskeleton with remarks on hard tissues of lower vertebrates in general. Ark Zool 2: 321–456Google Scholar
  38. Remberger K, Gay S (1977) Immunohistochemical differentiation of different collagen types in normal epiphyseal plate and in benign and malignant tumors of bone and cartilage. Z Krebsforsch 90: 95–106Google Scholar
  39. Richman JM, Diewert V (1988) The fate of Meckel's cartilage chondrocytes in ocular culture. Dev Biol 129: 48–60Google Scholar
  40. Rumpier Y (1962) Apparition chronologique des points d'ossification du squelette de l'embryon de poule. CR Assoc Anat 120: 1175–1191Google Scholar
  41. Schaffer J (1888) Die Verknöcherung des Unterkiefers und die Metaplasiefrage. Ein Beitrag zur Lehre der Osteogenese. Arch Mikrosk Anat Entwicklungsmech 32: 266–277Google Scholar
  42. Silbermann M, Lewinson D, Gonen H, Lizarbe MA, Mark K von der (1983) In vivo transformation of chondroprogenitor cells into osteoblasts and formation of new membrane bone. Anat Rec 206: 373–383Google Scholar
  43. Silbermann M, Reddi AH, Hand AR, Leapman R, Mark K von der, Franzen A (1987) Chondroid bone arises from mesenchymal stem cells in organ culture of mandibular condyles. J Craniofac Genet Dev Biol 7: 59–80Google Scholar
  44. Thorogood P (1979) In vivo studies on skeletogenic potential of membrane bone periosteal cells. J Embryol Exp Morphol 54: 185–207Google Scholar
  45. Tsao SW, Chuah MI (1988) Development of bone-like substance in cartilaginous rat nasal septum under experimental conditions. Anat Rec 221: 834–840Google Scholar
  46. Vincent J, Dhem A (1960) Etude microradiographique de l'ossification endochondrale. Acta Anat 40: 121–129Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • B. Lengelé
    • 1
  • J. Schowing
    • 2
  • A. Dhem
    • 1
  1. 1.Human Anatomy Research Unit, Faculty of Medicine, University of LouvainBrusselsBelgium
  2. 2.Institute of Zoology, Department of Embryology and Experimental TeratologyUniversity of FribourgFribourgSwitzerland

Personalised recommendations