Advertisement

Lasers, optical systems and safety in ophthalmology: a review

  • Franz Fankhauser
  • Ulrich Dürr
  • Hans Giger
  • Pascal Rol
  • Sylwia Kwasniewska
Review

Abstract

This is a review of optical methods related to biomicroscopy and laser treatment of the posterior segment of the eye. Contact lenses can be used to observe optical structures and couple laser radiation into the eye for a vast range of conditions and techniques. A small laser spot size is indispensable for photodisruptive work, though this requires a large beam diameter at the pupil and therefore optical systems and techniques such as scleral indentation which maximize the pupillary beam diameter are preferred. For coagulation work the choice of beam focusing optics is crucial for optimum safety. Vitreous replacement can be used to change the refractive power of the eye and permit new combinations of treatment and optical systems. This review covers many aspects of laser irradiation of the eye. It should be clear that, with the multitude of different procedures and optical systems involved, the laser surgeon is faced with a daunting task in assessing and meeting safety limits.

Keywords

Optical System Beam Diameter Laser Spot Posterior Segment Daunting Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ANSI (1995) American national standard for safe use of lasers. ANSI, Laser Inst. of America Orlando, FL p 7Google Scholar
  2. 2.
    Azzolini C, Docchio F, Brancato R (1993) Refractive hazards of intraoperative retinal photocoagulation. Ophthalmic Surg 24:16–23Google Scholar
  3. 3.
    Azzolini C, Brancato R, Trabucchi G, Camesasca F, Codenotti M, Verdi M (1994) Endophotocoagulation through perfluorodecalin in rabbit eyes. Int Ophthalmol 18: 33–36Google Scholar
  4. 4.
    Birngruber R, Lorenz B, Weinberg W, Greite J-H, Gabel V-P (1983) Komplikationen bei der Laserkoagulation durch das Panfundoskop. Fortschr Ophthalmol 79:434–437Google Scholar
  5. 5.
    Boldrey EE (1988) A modified contact lens for peripheral retinal evalulation in pseudophakos. Ophthalmology 95:16–17Google Scholar
  6. 6.
    Born M, Wolf E (1970) Stigmatic imaging of surfaces. In: Principles of optics, 4th edn. Pergamon Press, Oxford, pp 149–150Google Scholar
  7. 7.
    Cibis P (1962) Limits and hazards of photocoagulation. In: Symposium on photocoagulation. Trans Am Acad Ophthalmol Otolaryngol 66:71–87Google Scholar
  8. 8.
    Cibis P, Becker B, Okun E, Canaan S (1962) The use of liquid silicone in retinal detachment. Arch Ophthalmol 68:590–599Google Scholar
  9. 9.
    Das P (1990) Lasers and optical engineering, part 1. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. 10.
    Dewey D (1991) Corneal and retinal energy density with various laser beam delivery systems and contact lenses. SPIE 1423:105–116Google Scholar
  11. 11.
    Doccbio F, Azzolini C, Brancato R (1995) Refractive properties of interfaces due to the use of vitreous substitutes in vitreoretinal surgery: a ray-tracing approach. 1. Transpupillary laser photocoagulation. Lasers Light Ophthalmol 7:1–13Google Scholar
  12. 12.
    Docchio F, Azzolini C, Brancato R (1995) Refractive properties of interfaces due to the use of vitreous substitutes in vitreoretinal surgery: a ray-tracing approach. 2. Endoocular laser photocoagulation. Lasers Light Ophthalmol 7:15–24Google Scholar
  13. 13.
    Docchio F, Azzolini C, Brancato R (1995) Refractive properties of interfaces due to the use of vitreous substitutes in vitreoretinal surgery: a ray-tracing approach. 3. Modelling the effect of an air bubble within the irradiation path in endoocular laser photocoagulation. Lasers Light Ophthalmol 7: 25–30Google Scholar
  14. 14.
    Drack AV, Burke JP, Pulido JS, Keech RV (1992) Transient punctate lenticular opacities as a complication of argon-laser photoablation in an infant with retinopathy of prematurity. Am J Ophthalmol 113:583–584Google Scholar
  15. 15.
    Eisner G (1967) Attachment for Goldmann three-mirror contact glass. Am J Ophthalmol 64:467–468Google Scholar
  16. 16.
    Eisner G (1973) Biomicroscopy of the peripheral fundus. Springer, Berlin Heidelberg New York, pp 3–11Google Scholar
  17. 17.
    El Bayadi G (1953) New method of slit lamp micro ophthalmoscopy. Br J Ophthalmol 37:625–628Google Scholar
  18. 18.
    Fankhauser F, Lotmar W (1967) Photocoagulation through the Goldmann contact glass. Arch Ophthalmol 77:320–330Google Scholar
  19. 19.
    Fankhauser F, Lotmar W (1968) Methods of photocoagulation through the Goldmann contact glass. Mod Probl Ophthalmol 7:256–272Google Scholar
  20. 20.
    Fankhauser F, Lotmar W (1970) Skleraindentation and Photokoagulation. Acta Ophthalmol 48:253–260Google Scholar
  21. 21.
    Fankhauser F, Rol P (1985) Microsurgery with the neodymium: YAG laser: an overview. Int Ophthalmol Clin 25:55–84Google Scholar
  22. 22.
    Friberg TR (1990) Principles of photocoagulation using binocular indirect ophthalmoscope laser delivery systems. Int Ophthalmol Clin 30:89–94Google Scholar
  23. 23.
    Goldblatt NR (1990) Designing ophthalmic laser systems. In: The photonics design & applications handbook, book 3, 36th edn. Laurin, Pittsfield, Mass, pp 280–282Google Scholar
  24. 24.
    Goldmann H (1957) Biomicroscopie du corps vitre et du fonds de l'oeil. Masson, ParisGoogle Scholar
  25. 25.
    Goldmann H (1970) Fokale Beleuchtung. In: Straub W (ed) Die ophthalmologischen Untersuchungsmethoden, vol 1, Enke, Stuttgart, pp 104–230Google Scholar
  26. 26.
    Grignolo A (1965) Ophthalmoscopy and other methods of examination. In: Schepens CL, Regan CDJ (eds) Controversial aspects of the management of retinal detachment. Little Brown, Boston, pp 7–11Google Scholar
  27. 27.
    Huy CP, Larricart P, Warnet JM, Haut J (1992) In vitro laser decomposition of silicone fluid used in detachment of the retina. Ophthalmologica 204:23–26Google Scholar
  28. 28.
    Irvine WD, Smiddy WE, Nicholson DH (1990) Corneal and iris burns with the laser indirect opthalmoscope. Am J Ophthalmol 110: 311–313Google Scholar
  29. 29.
    Jay BS (1962) The effective pupillary area at varying perimetric angles. Vision Res 1:418–424Google Scholar
  30. 30.
    Landers MB III, Stefansson E, Wolbarsht ML (1981) The optics of vitreous surgery. Am J Ophthalmol 91:611–614Google Scholar
  31. 31.
    Launay F, Laroche G, Limon S (1982) Modifications de la réfraction après injections intea-oculaires de silicone liquide. J Fr Ophthalmol 5:417–425Google Scholar
  32. 32.
    Le Grand Y (1953) La dioptrique de l'oeil et sa correction. Rev Opt (Paris) 1–52Google Scholar
  33. 33.
    Lotmar W (1971) Theoretical eye model with aspherics. J Opt Soc Am 61:1522–1529Google Scholar
  34. 34.
    Lotmar W, Fankhauser F, Roulier A (1969) Photocoagulation through the Goldmann contact glass. IV. A second model of the attachment to the Zeiss-Oberkochen photocoagulator and some improvements of the Siemens ruby laser coagulator. Arch Ophthalmol 82:314–319Google Scholar
  35. 35.
    Mainster MA, Crossman JL, Erickson PJ, Heacock GL (1990) Retinal laser lenses: magnification, spot size, and field of view. Br J Ophthalmol 74:177–179Google Scholar
  36. 36.
    Morley MG, Frederick AR Jr (1992) Melted haptic as a complication of the indirect ophthalmic laser delivery system. Am J Ophthalmol 113:584–586Google Scholar
  37. 37.
    Nakao S, Fujimoto S, Nagata R, Iwata K (1968) Model of refractive-index distribution in the rabbit crystalline lens. J Opt Soc Am 58: 1125–1130Google Scholar
  38. 38.
    Navarro R, Santamaria J, Bescos J (1985) Aceomodation-dependent model of the human eye with aspherics. J Opt Soc Am 2:1273–1281Google Scholar
  39. 39.
    Packo KH (1995) Indirect laser ophthalmology technique. Rev Ophthalmol April:67–70Google Scholar
  40. 40.
    Pogrebniak AE, Bolling JP, Stewart MW (1994) Argon laser-induced cataract in an infant with retinopathy of prematurity. Am J Ophthalmol 117:261–262Google Scholar
  41. 41.
    Pomerantzeff O, Pankratov M, Wang G-JI, Dufault P (1984) Wide-angle optical model of the eye. Am J Optom Physiol Optics 61: 166–176Google Scholar
  42. 42.
    Riquin D, Fankhauser F, Lörtscher HP (1983) Contact glasses for use with high power lasers. Int Ophthalmol 6:191–200Google Scholar
  43. 43.
    Rol P, Fankhauser F, Kwasniewska S (1986) A new contact lens for posterior vitreous photodisruption. Invest Ophthalmol Vis Sci 27:946–950Google Scholar
  44. 44.
    Rol P, Fankhauser F, Kwasniewska S (1986) Aiming accuracy in ophthalmic laser microsurgery. Ophthalmic Surg 17:278–282Google Scholar
  45. 45.
    Rol P, Fankhauser F, Kwasniewska S (1986) Evaluation of contact lenses for laser therapy. I. Lasers Ophthalmol 1: 1–20Google Scholar
  46. 46.
    Rotter H (1952) Zur Theorie der Spaltlampenmikroskopie des Augenhintergrundes. Graefe's Arch Ophthalmol 152:689–718Google Scholar
  47. 47.
    Rotter H (1955) Zur Theorie der Spaltlampenmikroskopie des Augenhintergrundes. Über die Verwendung einer Sammellinse als Vorsatzglas. Graefe's Arch Ophthalmol 156:503–518Google Scholar
  48. 48.
    Roussel P, Fankhauser F (1983) Contact glass for use with high power lasers — geometrical and optical aspects. Int Ophthalmol 6: 183–190Google Scholar
  49. 49.
    Rubinfeld RS, Pilkerton AR Jr, Zimmerman LE (1990) A corneal complication of indirect ophthalmic laser delivery systems. Am J Ophthalmol 110:206–208Google Scholar
  50. 50.
    Schepens CL (1950) Examination of the ora serrata region: its clinical significance. XVI. Acta Cone Ophthalmol 2:1384–1393Google Scholar
  51. 51.
    Schlegel HJ (1969) Eine einfache Weitwinkeloptik zur Spaltlampenmikroskopischen Untersuchung des Augenhintergrundes. Doc Ophthalmol 26:300–308Google Scholar
  52. 52.
    Smith WJ (1978) Lagrange invariant. In: Driscoll WG (ed) Handbook of sect 2–8. McGraw-Hill, New YorkGoogle Scholar
  53. 53.
    Stefansson E, McCuen BW II, McPherson SD (1984) Biconcave contact lens for examination and laser treatment of the fundus in normal and gas-filled phakic eyes. Am J Ophthalmol 98: 806–807Google Scholar
  54. 54.
    Stefansson E, Tiedeman J (1988) Optics of the eye with air or silicone oil. Retina 8: 10–19Google Scholar
  55. 55.
    Stefansson E, Anderson MM Jr, Landers MB III, Tiedeman JS, McCuen BW II (1988) Refractive changes from use of silicone oil in vitreous surgery. Retina 8:20–23Google Scholar
  56. 56.
    Taboada J (1983) Interaction of short laser pulses with ocular tissues. In: Trokel SL (ed) YAG laser ophthalmic surgery. Appleton Century Croft, Norwalk, Conn, p 17Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Franz Fankhauser
    • 1
  • Ulrich Dürr
    • 2
  • Hans Giger
    • 1
  • Pascal Rol
    • 3
  • Sylwia Kwasniewska
    • 1
  1. 1.Lindenhofspital BernBernSwitzerland
  2. 2.Meridian AGBernSwitzerland
  3. 3.University Eye ClinicZurichSwitzerland

Personalised recommendations