Geometriae Dedicata

, Volume 33, Issue 2, pp 123–152 | Cite as

Dissecting orthoschemes into orthoschemes

  • Hans E. Debrunner
Article

Abstract

We exhibit a dissection, with one degree of freedom, of an arbitrary orthoscheme in Euclidean, spherical or hyperbolic d-space into d+1 orthoschemes (Section 2); this can be interpreted as a set of relations in the scissors congruence group or, weaker, as a set of functional equations for the volume. Besides special cases where the dissection is into mutually congruent parts, we obtain, in the spherical case and for a special value of the parameter, scissors congruence formulae similar to Schläfli's period formulae for the spherical orthoscheme volume (see Section 5). In Section 6 we use the dissection to explain the structure of the volume formula for asymptotic hyperbolic 3-orthoschemes due to Lobachevsky. Finally, in Section 7, by exploiting symmetries, we show that two systems of special volume relations of Schläfli (in spherical d-space) and Coxeter (for all three geometries in dimension 3) hold even on the level of dissection. In particular, it seems that all the presently known exact values for the volume of special spherical 3-simplexes hold, independently of Schläfli's differential formula, as consequences of scissors congruence relations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhm, J., ‘Zur Geometrie asymptotischer Orthoscheme in n-dimensionalen hyperbolischen Räumen’, Wiss. Z. Friedrich-Schiller-Univ. Jena 14 (1965), 329–337.Google Scholar
  2. 2.
    Böhm, J. and Hertel, E., Polyedergeometrie in n-dimensionalen Räumen konstanter Krümmung, Birkhäuser, Basel, 1981.Google Scholar
  3. 3.
    Coxeter, H. S. M., ‘On Schläfli's Generalization of Napiers Pentagramma Mirificum’, Bull. Calcutta Math. Soc. 28 (1936), 125–144.Google Scholar
  4. 4.
    Coxeter, H. S. M., Twelve Geometric Essays, Southern Illinois Press, Carbondale, 1968.Google Scholar
  5. 5.
    Coxeter, H. S. M., Regular Polytopes (3rd edn), Dover, New York, 1973.Google Scholar
  6. 6.
    Coxeter, H. S. M., Regular Complex Polytopes, Cambridge Univ. Press, 1974.Google Scholar
  7. 7.
    Coxeter, H. S. M., ‘Trisecting an orthoscheme’ in Symmetry Unifying Human Understanding, II (ed. Istvan Hargittai), Pergamon, New York, 1988.Google Scholar
  8. 8.
    Coxeter, H. S. M., ‘Star polytopes and the Schläfli function’, Elem. Math. 44 (1989), 25–36.Google Scholar
  9. 9.
    Debrunner, H. E., ‘Tiling Euclidean d-space with congruent simplexes’, Discrete Geometry and Convexity (New York, 1982), pp. 230–261; Annals New York Acad. Sci. 440.Google Scholar
  10. 10.
    Lobachevsky, N. I., ‘On the foundations of geometry’, Kazan Messenger 25–28 (1829–30); German transl., Zwei geometrische Abhandlungen, Teubner, Leipzig, 1898.Google Scholar
  11. 11.
    Milnor, J., ‘Hyperbolic geometry: The first 150 Years’, Bull. Amer. Math. Soc. N.S. 6(1982), 9–24.Google Scholar
  12. 12.
    Monson, B. R., ‘The densities of certain regular star polytopes’, C.R. Math. Rep. Acad. Sci. Canada 2 (1980), 73–78.Google Scholar
  13. 13.
    McMullen, P. and Schneider, R., ‘Valuations on convex bodies’, in Convexity and Its applications (ed. P. M. Gruber and J. M. Wills), Birkhäuser, Basel, 1983, pp. 170–247.Google Scholar
  14. 14.
    Sah, C. H., Hilbert's Third Problem: Scissors Congruence, Pitman, San Francisco, 1979.Google Scholar
  15. 15.
    Sah, C. H., ‘Scissors congruences, I. The Gauss-Bonnet map’, Math. Scand. 49 (1981), 181–210.Google Scholar
  16. 16.
    Schläfli, L., Gesammelte Mathematische Abhandlungen I, Birkhäuser, Basel, 1950.Google Scholar
  17. 17.
    Schläfli, L., Gesammelte Mathematische Abhandlungen II, Birkhäuser, Basel, 1953.Google Scholar
  18. 18.
    Thurston, W., ‘The geometry and topology of 3-manifolds’, Lecture Notes, Princeton Univ., Princeton, N.J., 1978.Google Scholar
  19. 19.
    Whitney, H., Geometric Integration Theory, Princeton Univ. Press, Princeton, N.J., 1957.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Hans E. Debrunner
    • 1
  1. 1.Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen ForschungMathematisches Institut der Universität BernBernSwitzerland

Personalised recommendations