Journal of Biomolecular NMR

, Volume 5, Issue 4, pp 383–396 | Cite as

Manifestation of intramolecular motions on pico- and nanosecond time scales in 1H−15N NMR relaxation: Analysis of dynamic models of one- and two-helical subunits of bacterioopsin

  • Konstantine V. Pervushin
  • Vladislav Yu. Orekhov
  • Dmitry M. Korzhnev
  • Alexander S. Arseniev
Research Papers


The influence of the internal dynamics of two polypeptides comprising transmembrane α-helix A or two α-helices A and B of bacterioopsin on experimentally accessible 15N NMR relaxation rates was investigated by molecular dynamics (MD) simulations, combined with more simple mechanic considerations. ‘Model-free’ order parameters and correlation times of internal motions [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559] were calculated for these models. It was found that both peptides exhibit two types of internal motions of the amide bonds, on the pico- and nanosecond time scales, affecting 15N NMR relaxation. The fast fluctuations are local and correspond to the librational motions of the individual N−H vectors in an effective potential of atoms of the surrounding matrix. In contrast, the motions on the nanosecond time scale imply concerted collective vibrations of a large number of atoms and could be represented as bending oscillation of α-helices, strongly overdamped by the ambient solvent. A few other molecular mechanisms of slow internal motion were found, such as local distortions of the α-helices (e.g., α-aneurysm), delocalized distortions of the α-helical backbone, as well as oscillations of the tilt angle between the axes of the α-helices A and B. The results are compared with 15N NMR relaxation data measured for the (1–36)bacterioopsin and (1–71)bacterioopsin polypeptides in chloroform-methanol (1:1) and in SDS micelles [Orekhov, V.Yu., Pervushin, K.V. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 887–896].


Molecular dynamics simulation Heteronuclear Micelles Bacterioopsin Spatial structure Helix-helix interaction Relaxation Membrane proteins 









molecular dynamics


root-mean-square deviation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akke, M., Bruschweiler, R. and PalmerIII, A.G. (1993) J. Am. Chem. Soc., 115, 9832–9833.Google Scholar
  2. Aqvist, J., VanGusteren, F.W., Leijonmarck, M. and Tapia, O. (1985) J. Mol. Biol., 183, 461–477.Google Scholar
  3. Barchi, J.J., Grasberger, B., Gronenborn, A.M. and Clore, G.M. (1994) Protein Sci., 3, 15–21.Google Scholar
  4. Bolotin, V.V. (1978) The vibrations in the Machines, Vol. 1, Machinostroenie, Moscow, pp. 310–318.Google Scholar
  5. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. (1983) J. Comput. Chem., 4, 187–217.Google Scholar
  6. Bruschweiler, R., Roux, B., Blackledge, M., Griesinger, C., Karplus, M. and Ernst, R.R. (1992) J. Am. Chem. Soc., 114, 2289–2302.Google Scholar
  7. Chou, K.C., Nemethy, G. and Scheraga, H.A. (1984) J. Am. Chem. Soc., 106, 3161–3170.Google Scholar
  8. Chou, K.C. (1988) Biophys. Chem., 30, 3–48.Google Scholar
  9. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989–4991.Google Scholar
  10. Edholm, O. and Jahnig, F. (1988) Biophys. Chem., 30, 279–292.Google Scholar
  11. Eriksson, M.A.L., Berglund, H., Hard, T. and Nilsson, L. (1993) Proteins, 17, 375–390.Google Scholar
  12. Girvin, M.E. and Fillingame, R.H. (1994a) Biochemistry, 32, 12167–12177.Google Scholar
  13. Girvin, M.E. and Fillingame, R.H. (1994b) Biochemistry, 33, 665–674.Google Scholar
  14. Keefe, L.J., Sondek, J., Shortle, D. and Lattman, E.E. (1993) Proc. Natl. Acad. Sci. USA, 90, 3275–3279.Google Scholar
  15. Landau, L.D. and Lifshitz, E.M. (1987) Theoretical Physics, Vol. 7, Nauka, Moscow, pp. 109–119.Google Scholar
  16. Levitt, M., Sander, C. and Stern, P.S. (1985) J. Mol. Biol., 181, 423–436.Google Scholar
  17. Levy, R.M. and Karplus, M. (1979) Biopolymers, 18, 2465–2495.Google Scholar
  18. Levy, R.M., Perahia, D. and Karplus, M. (1982) Proc. Natl. Acad. Sci. USA, 79, 1346–1350.Google Scholar
  19. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  20. Lipari, G., Szabo, A. and Levy, R.M. (1982) Nature, 300, 197–198.Google Scholar
  21. Noguti, G.N.T. and Nishikawa, T. (1983) Proc. Natl. Acad. Sci. USA, 80, 3669–3700.Google Scholar
  22. Orekhov, V.Yu., Pervushin, K.V. and Arseniev, A.S. (1994a) Eur. J. Biochem., 219, 887–896.Google Scholar
  23. Orekhov, V.Yu., Pervushin, K.V., Korzhnev, D.M. and Arseniev, A.S. (1994b) manuscript in preparation.Google Scholar
  24. PalmerIII, A.G. and Case, D.A. (1992) J. Am. Chem. Soc., 114, 9059–9067.Google Scholar
  25. Persson, B.N.J. (1986) Chem. Phys. Lett., 127, 428–431.Google Scholar
  26. Pervushin, K.V. and Arseniev, A.S. (1992) FEBS Lett., 308, 190–196.Google Scholar
  27. Pervushin, K.V., Orekhov, V.Yu., Popov, A., Musina, L.Yu. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 571–583.Google Scholar
  28. Pleiss, J. and Jahnig, F. (1991) Biophys. J., 59, 795–804.Google Scholar
  29. Popot, J.L. (1993) Curr. Opin. Struct. Biol., 3, 532–540.Google Scholar
  30. Richardson, J.S. and Richardson, D.C. (1993) Science, 240, 1648–1652.Google Scholar
  31. Sankararamakrishnan, R. and Vishveshwara, S. (1993) Proteins, 15, 26–41.Google Scholar
  32. Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B. (1991) Biochemistry, 30, 9686–9697.Google Scholar
  33. Sobol, A.G., Arseniev, A.S., Abdulaeva, G.V., Musina, L.Yu. and Bystrov, V.F. (1992) J. Biomol. NMR, 2, 161–171.Google Scholar
  34. Swaminathan, S., Ichiye, T., VanGusteren, F.W. and Karplus, M. (1982) Biochemistry, 21, 5230–5241.Google Scholar
  35. Szyperski, T., Luginbuhl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 151–164.Google Scholar
  36. Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748–754.Google Scholar
  37. Zwanzig, R. and Ailawadi, N.K. (1969) Phys. Rev., 182, 280–283.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1995

Authors and Affiliations

  • Konstantine V. Pervushin
    • 1
  • Vladislav Yu. Orekhov
    • 1
  • Dmitry M. Korzhnev
    • 1
  • Alexander S. Arseniev
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations