Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica

Abstract

Annual gross productivity of the lichen-dominated cryptoendolithic community was calculated from a computer analysis of photosynthetic response based on laboratory measurements of C02 exchange and three years (1985–1988) of field nanoclimate data. Photosynthetic optimum increased from −3 to 2°C between irradiance levels of 100 and 1500 μmol photons m−2 s−1, while the upper compensation point rose from 1 to 17°C. The mean yearly total time available for metabolic activity (temperature above −10°C and moisture present) was 771.3 h for horizontal rock, 421.5 h for northeast-oriented sloped rock, and 1042.2 h for a small depression in horizontal rock (the characteristic site of occasional lichen apothecia). The calculated mean gross productivity value for a horizontal rock was 1215 mg C m−2 y−1, and net photosynthetic gain was 606 mg C m−2 y−1. Net ecosystem productivity (annual accretion of cellular biomass) estimated from long-term events amounted to only about 3 mg C m−2 y−1. The difference between these two values may represent the long-term metabolic costs of the frequent dehydration-rehydration and freezing-thawing cycles or of overwintering, and may account for the leaching of organic substances to the rock.

The yearly gross productivity of the cryptoendolithic microbial community of the entire Ross Desert area was estimated at approximately 120,000–180,000 kg C. Of this, 600–900 kg C is in microbial biomass, and much of the rest is soluble compounds that leach into the rocks and possibly percolate to the valleys, providing a source of organic matter for lakes, rivers, and soils.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bertsch A (1966) Über den CO2-Gaswechsel einiger Flechten nach Wasserdampfaufnahme. Planta 68:157–166

  2. 2.

    Bonani G, Friedmann EL Ocampo-Friedmann R, McKay CP, Wölfli W (1988) Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. Polarforschung 58:199–200

  3. 3.

    Farrar JF (1976) The lichen as an ecosystem: Observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: Progress and problems. Academic Press, London, pp 385–406

  4. 4.

    Farrar JF (1988) Physiological buffering. In: Galun M (ed) Handbook of lichenology, vol. 2. CRC Press, Boca Raton, pp 101–105

  5. 5.

    Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge

  6. 6.

    Friedmann EI (1977) Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarct J U S 12:26–29

  7. 7.

    Friedmann EI (1978) Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarct J U S 13:162–163

  8. 8.

    Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

  9. 9.

    Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

  10. 10.

    Friedmann EI, Garty Y, Kappen L (1980) Fertile stages of endolithic lichens in the dry valleys of Southern Victoria Land. Antarct J U S 15:166–167

  11. 11.

    Friedmann EI, LaRock PA, Brunson JD (1981) Adenosine triphosphate (ATP), chlorophyll, and organic nitrogen in endolithic microbial communities and adjacent soils in the dry valleys of Southern Victoria Land. Antarct J U S 15:164–166

  12. 12.

    Friedman EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Satellite transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287

  13. 13.

    Friedmann EI, Hua MS, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–260

  14. 14.

    Greenfield LG (1988) Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica. Polarforschung 58:211–218

  15. 15.

    Gunn BM, Warren G (1962) Geology of Victoria Land between the Mawson and Mulock glaciers, Antarctica. New Zealand Geol Survey Bull NS 71

  16. 16.

    Hale ME Jr (1987) Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica. Lichenologist 19:269–287

  17. 17.

    Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microb 57:645–648

  18. 18.

    Johnston C, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic communities. Are they the slowest-growing communities on earth? Appl Environ Microb 57:2308–2311

  19. 19.

    Kappen L (1983) Ecology and physiology of the Antarctic fruticose lichen Usnea sulphurea (Koenig) Th. Fries. Polar Biol 1:249–255

  20. 20.

    Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232

  21. 21.

    Kappen L, Friedmann EI, Garty J (1981) Echophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235

  22. 22.

    Kappen L, Bölter M, Kühn A (1986) Field measurements of net photosynthesis of lichens in the Antarctic. Polar Biol 5:255–258

  23. 23.

    Kappen L, Bölter M, Kühn A (1987) Photosynthetic activity of lichens in natural habitats in the maritime Antarctic. Bibl Lichenol 25:297–312

  24. 24.

    Kappen L, Meyer M, Bölter M (1988) Photosynthetic production of the lichen Ramalina terebrataa Hook. f. et Tayl. in the maritime Antarctic. Polarforschung 58:181–188

  25. 25.

    Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora (Abt B) 158:324–359

  26. 26.

    Lange OL, Bertsch A (1965) Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215–216

  27. 27.

    Lange OL, Kappen L (1972) Photosynthesis of lichens from Antarctica. Antarct Res Ser 20:83–96

  28. 28.

    Link SO, Driscoll MF, Nash TC III (1985). CO2 exchange in lichens: Towards a mechanistic model. In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 77–91

  29. 29.

    McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: Temperature variations in nature. Polar Biol 4:19–25

  30. 30.

    McKay CP, Long A, Friedmann EI (1986) Radiocarbon dating of open systems with bomb effect. J Geophys Res 9113:3836–40

  31. 31.

    Meyer MA, Huang GH, Morris GJ, Friedmann EI (1988) The effect of low temperatures on Antarctic endolithic green algae. Polarforschung 58:113–120

  32. 32.

    Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Mathematical models of the thermal regime. Microb Ecol 16:253–270

  33. 33.

    Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Light in the photosynthetically active region. Microb Ecol 16:271–289

  34. 34.

    Palmer RJ Jr, Friedmann EI (1990) Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb Ecol 18:111–118

  35. 35.

    Reed KL, Hamerly ER, Dinger BE, Jarvis PG (1976) An analytical model for field measurement of photosynthesis. J Appl Ecol 13:925–942

  36. 36.

    Ronen R, Galun M (1984) Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environ Exp Bot 24:239–245

  37. 37.

    Scherer S, Potts M (1989) Novel water stress protein from a desiccation-tolerant cyanobacterium. J Biol Chem 264:12546–12553

  38. 38.

    Siebert J, Palmer RJ Jr, Hirsch P (1991) Analysis of free amino acids in microbially colonized sandstone by precolumn phenyl isothiocyanate derivatization and high-performance liquid chromatography. Appl Environ Microb 57:879–881

  39. 39.

    Tuovila BJ, LaRock PA (1987) Occurrence and preservation of ATP in Antarctic rocks and its implications in biomass determinations. Geomicrobiol J 5:105–118

  40. 40.

    Vestal JR (1988a) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microb 54:960–965

  41. 41.

    Vestal JR (1988b) Primary production of the cryptoendolithic microbiota from the Antarctic desert. Polarforschung 58:193–198

  42. 42.

    Weed R, Norton SA (1991) Siliceous crusts, quartz rinds and biotic weathering of sandstones in the cold desert of Antarctica. In: Berthelin J (ed) Developments in Geochemistry, vol. 6. Elsevier, Amsterdam, pp 327–339

  43. 43.

    Whittaker RH (1975) Communities and ecosystems, 2nd ed. McMillan, New York

  44. 44.

    Wilkinsosn L (1988) SYSTAT: The system for statistics. SYSTAT Inc., Evanston, IL

  45. 45.

    Wilson AT (1979) Geochemical problems of the Antarctic dry areas. Nature(London) 280:205–208

Download references

Author information

Additional information

Offprint requests to: E. I. Friedmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Friedmann, E.I., Kappen, L., Meyer, M.A. et al. Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25, 51–69 (1993). https://doi.org/10.1007/BF00182129

Download citation

Keywords

  • Microbial Biomass
  • Percolate
  • Slope Rock
  • Compensation Point
  • Desert Area