Geometriae Dedicata

, Volume 27, Issue 1, pp 65–75 | Cite as

Geometric relations among Voronoi diagrams

  • F. Aurenhammer
  • H. Imai
Article

Abstract

Two general classes of Voronoi diagrams are introduced and, along with their modifications to higher order, are shown to be geometrically related. This geometric background, on the one hand, serves to analyse the size and combinatorial structure and, on the other, implies general and efficient methods of construction for various important types of Voronoi diagrams considered in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, F. P. and Bolker, E. D., ‘Recognizing Dirichlet Tessellations’, Geom. Dedicata 19, 2(1985), 175–206.Google Scholar
  2. 2.
    Ash, F. P. and Bolker, E. D., ‘Generalized Dirichlet Tessellations’, Geom. Dedicata 20 (1986), 209–243.Google Scholar
  3. 3.
    Aurenhammer, F., ‘Power Diagrams: Properties, Algorithms, and Applications’, SIAM J. Comput. 16, 1 (1987), 78–96.Google Scholar
  4. 4.
    Aurenhammer, F., ‘A Criterion for the Affine Equivalence of Cell Complexes in R d and Convex Polyhedra in R d + 1, Disc. Comput. Geom. 2, 1 (1987), 49–64.Google Scholar
  5. 5.
    Aurenhammer, F., ‘The One-Dimensional Weighted Voronoi Diagram’, IPL 22 (1986), 119–123.Google Scholar
  6. 6.
    Aurenhammer, F., ‘A New Duality Result concerning Voronoi Diagrams’, LNCS 226 (1986), 21–30.Google Scholar
  7. 7.
    Aurenhammer, F. and Edelsbrunner, H., ‘An Optimal Algorithm for Constructing the Weighted Voronoi Diagram in the Plane’, Pattern Recognition 17, 2 (1984), 251–257.Google Scholar
  8. 8.
    Chazelle, B., Drysdale, R. L, III, and Lee, D. T., ‘Computing the Largest Empty Rectangle’, SIAM J. Comput. 15, 1 (1986), 300–315.Google Scholar
  9. 9.
    Edelsbrunner, H. and Seidel, R., ‘Voronoi Diagrams and Arrangements’, Disc. Comput. Geom. 1, 1 (1986), 25–44.Google Scholar
  10. 10.
    Fortune, S., ‘A Sweepline Algorithm for Voronoi Diagrams’, Algorithmica 2 (1987), 153–174.Google Scholar
  11. 11.
    Imai, H., ‘The Laguerre—Voronoi Diagram and the Voronoi Diagram for the General Quadratic-Form Distance’, Manuscript (1985).Google Scholar
  12. 12.
    Imai, H., Iri, M. and Murota, K., ‘Voronoi Diagram in the Laguerre Geometry and its Applications’, SIAM J. Comput. 14, 1 (1985), 93–105.Google Scholar
  13. 13.
    Lee, D. T., ‘Two-Dimensional Voronoi Diagrams in the L p-Metric’, J. ACM (1980), 604–618.Google Scholar
  14. 14.
    Lee, D. T. and Drysdale, R. L, III, ‘Generalized Voronoi Diagrams in the Plane’, SIAM J. Comput. 10, 1 (1981), 73–87.Google Scholar
  15. 15.
    Linhart, J., ‘Dirichletsche Zellenkomplexe mit maximaler Eckenanzahl’, Geom. Dedicata 11 (1981), 363–367.Google Scholar
  16. 16.
    McMullen, P., ‘The Maximal Numbers of Faces of a Convex Polytope’, Mathematika 17 (1970), 179–184.Google Scholar
  17. 17.
    Seidel, R., ‘A Convex, Hull Algorithm Optimal for Point Sets in Even Dimensions’, Rep. 81–14, Dept of Computer Science, Univ. of British Columbia, Vancouver B.C. (1981).Google Scholar
  18. 18.
    Seidel, R., ‘Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face’, Proc. 18th ACM Symp. STOC (1986), pp. 404–413.Google Scholar
  19. 19.
    Shamos, M. I. and Hoey, D., ‘Closest-Point Problems’, Proc. 17th IEEE Symp. FOCS (1975), pp. 151–162.Google Scholar
  20. 20.
    Yap, C. K., ‘An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments’, Disc. Comput. Geom. 2 (1987), 365–393.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • F. Aurenhammer
    • 1
  • H. Imai
    • 2
  1. 1.Institutes for Information ProcessingTechnical University of Graz and Austrian Computer SocietyGrazAustria
  2. 2.Department of Computer Science and Communication EngineeringKyushu UniversityFukuotaJapan

Personalised recommendations