Geometriae Dedicata

, Volume 41, Issue 1, pp 63–87 | Cite as

Generation of exceptional groups of Lie-type

  • Thomas S. Weigel
Article

Abstract

In this paper we prove two theorems concerning the generation of a finite exceptional group of Lie-type GF. The first is: there is a semisimple element s such that for ‘nearly all’ elements xGFthe elements s and x generate the group GF. The second theorem we prove is: if G is a finite simple exceptional group of Lie-type not of type E6 or 2E6, then it is generated by three involutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aschbacher, M., ‘Finite groups generated by odd transpositions I, II, III, IV’, Math. Z. 127 (1972), 46–56; J. Algebra 26 (1973), 451–459, 460–478, 479–491.Google Scholar
  2. 2.
    Aschbacher, M., ‘Chevalley groups of type G 2 as the group of a trilinear form’, J. Algebra 109 (1987), 193–259.Google Scholar
  3. 3.
    Aschbacher, M., ‘The maximal subgroups of E 6’ (to appear).Google Scholar
  4. 4.
    Carter, R. W., Simple Groups of Lie-type, Wiley, 1972.Google Scholar
  5. 5.
    Carter, R. W., ‘Conjugacy classes in the Weyl group’, Comp. Math. 25 (1972), 1–59.Google Scholar
  6. 6.
    Cline, E., Parshall, B. and Scott, L., ‘Cohomology of finite groups of Lie-type II’, J. Algebra 45 (1977), 182–198.Google Scholar
  7. 7.
    Cohen, A. M. and Cooperstein, B., ‘The 2-spaces of the standard E 6(q)-module’, Geom. Dedicata 25 (1988), 467–480.Google Scholar
  8. 8.
    Cohen, A. M., Liebeck, M. W., Saxl, J. and Seitz, G. M., ‘The local maximal subgroups of the finite groups of Lie-type’ (preprint).Google Scholar
  9. 9.
    Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups, Clarenden Press, Oxford, 1985.Google Scholar
  10. 10.
    Cooperstein, B., ‘Maximal subgroups of G 2(2n)’, J. Algebra 70 (1981), 23–36.Google Scholar
  11. 11.
    Cooperstein, B., ‘The geometry of root subgroups in exceptional groups I’, Geom. Dedicata 8 (1979), 317–381.Google Scholar
  12. 12.
    Dalla Volta, F., ‘Gruppi sporadici generati da tre involutioni’, RILS A119 (1984), 65–87.Google Scholar
  13. 13.
    Dalla Volta, F. and Tamburini, M. C., ‘Generation of some orthogonal group by a set of 3 involutions’ (preprint).Google Scholar
  14. 14.
    Dalla Volta, F. and Tamburini, M. C., ‘Generatione di PSp(4, q) mediante tre involutioni’ (preprint).Google Scholar
  15. 15.
    Deriziotis, D. I., ‘The centralizers of semisimple elements of the Chevalley groups E 7 and E 8’, Tokyo J. Math. 6 (1983), 191–216.Google Scholar
  16. 16.
    Deriziotis, D. I. and Liebeck, M. W., ‘Centralizers of semisimple elements in finite twisted groups of Lie-type’, J. London Math. Soc. 31 (1985), 48–54.Google Scholar
  17. 17.
    Hering, Ch., ‘Transitive linear groups and linear groups which contain irreducible subgroups of prime order II’, J. Algebra 93 (1985), 151–164.Google Scholar
  18. 18.
    Kantor, W., Classical Groups from a Non-Classical Viewpoint, Oxford, 1979.Google Scholar
  19. 19.
    Kantor, W. and Lubotzky, A., ‘The probability of generating a finite classical group’, Geom. Dedicata 36 (1990), 67–88.Google Scholar
  20. 20.
    Kleidman, P., ‘The maximal subgroups of the finite Steinberg triality groups 3 D 4(q) and their automorphism groups’, J. Algebra 115 (1988), 182–199.Google Scholar
  21. 21.
    Kleidman, P., ‘The maximal subgroups of the Chevalley groups G 2(q) with q odd, the Ree groups 2 G 2(q), and their automorphism groups’, J. Algebra 117 (1988), 30–71.Google Scholar
  22. 22.
    Landazuri, V. and Seitz, G. M., ‘On the minimal degrees of projective representations of the finite Chevalley groups’, J. Algebra 32 (1974), 418–443.Google Scholar
  23. 23.
    Levchuck, V. M. and Nuzhin, Y. N., ‘Structure of Ree groups’, Algebra Logika 24 (1985), 26–41.Google Scholar
  24. 24.
    Liebeck, M. W. and Saxl, J., ‘Primitive permutation groups containing an element of large prime order’, J. London Math. Soc. (2), 31 (1985), 426–446.Google Scholar
  25. 25.
    Liebeck, M. W. and Saxl, J., ‘On the order of maximal subgroups of the finite exceptional groups of Lie-type’, Proc. London Math. Soc. (3), 55 (1987), 299–330.Google Scholar
  26. 26.
    Malle, G., ‘Exceptional groups of Lie-type as Galois groups’, J. reine angew. Math. 392 (1988), 70–109.Google Scholar
  27. 27.
    Malle, G., ‘Hurwitz groups and G 2’, Canad. Math. Bull. 33 (3) (1990), 349–357.Google Scholar
  28. 28.
    Malle, G., ‘The maximal subgroups of 2 F 4(q 2)’ (to appear in J. Algebra).Google Scholar
  29. 29.
    Norton, S. P. and Wilson, R. A., ‘The maximal subgroups of F 4(2) and its automorphism group’, Comm. Algebra 17 (11) (1989), 2809–2824.Google Scholar
  30. 30.
    Piper, F. C., ‘On elations of finite projective spaces of odd order’, J. London Math. Soc. 41 (1966), 641–648.Google Scholar
  31. 31.
    Piper, F. C., ‘On elations of finite projective spaces of even order’, J. London Math. Soc. 43 (1968), 456–464.Google Scholar
  32. 32.
    Seitz, G. M., ‘The root subgroups for maximal tori in finite groups of Lie-type’, Pacific J. Math. 106, No. 1 (1983), 153–244.Google Scholar
  33. 33.
    Suzuki, M., ‘On a class of doubly transitive groups’, Ann. Math. 75 (1962), 105–145.Google Scholar
  34. 34.
    Wagner, A., ‘Groups generated by elations’, Abh. Hamburg 41 (1974), 199–205.Google Scholar
  35. 35.
    Wagner, A., ‘The minimal number of involutions generating some finite three dimensional group’, Boll. Un. Tat. Ital. 15A (1978), 431–439.Google Scholar
  36. 36.
    Weigel, Th., ‘Residual properties of free groups, II’ (submitted).Google Scholar
  37. 37.
    Weigel, Th., ‘Residual properties of free groups, III’ (preprint).Google Scholar
  38. 38.
    Wong, P. and Seitz, G. M., ‘Groups with a (B, N)-pair of rank 2.I’, Invent. Math. 21 (1973), 1–57.Google Scholar
  39. 39.
    Zsigmondy, K., ‘Zur Theorie der Potenzreste’, Monatsh. Math. Phys. 3 (1892), 265–284.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Thomas S. Weigel
    • 1
  1. 1.Mathematisches Institut der Universität FreiburgFreiburg im Br.Germany

Personalised recommendations