Geometriae Dedicata

, Volume 36, Issue 1, pp 95–119 | Cite as

A combinatorial setting for questions in Kazhdan — Lusztig theory

  • Vinay V. Deodhar


Let(W, S) be a Coxeter group. Let s1 ... sk be a reduced expression for an element y in W. A combinatorial setting involving subexpressions of this reduced expression is developed. This leads to the notion of good elements. It is proved that all elements in a group where the coefficients of Kazhdan — Lusztig polynomials are non-negative are good. If y is good then an algorithm is developed to compute these polynomials in a very efficient way. It is further proved that in these cases, the coefficients of these polynomials can be identified as sizes of certain subsets of subexpressions thereby providing an explicit setting for various questions regarding these polynomials and related topics. Similar results are obtained for the so-called parabolic case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boe, B., ‘Kazhdan—Lusztig polynomials for Hermitian symmetric spaces’ (preprint).Google Scholar
  2. 2.
    Bourbaki, N., Groupes et algebres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.Google Scholar
  3. 3.
    Demazure, M., ‘Désingularisation des varietés de Schubert généralisées’, Ann. Ec. Norm. Sup. 6 (1974), 53–88.Google Scholar
  4. 4.
    Deodhar, V., ‘On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells’, Invent. Math. 79 (1985), 499–511.Google Scholar
  5. 5.
    Deodhar, V., ‘On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan—Lusztig polynomials’, J. Algebra 111 (2) (1987), 483–506.Google Scholar
  6. 6.
    Deodhar, V., ‘Duality in parabolic set up for questions in Kazhdan—Lusztig theory’, J. Algebra, to appear.Google Scholar
  7. 7.
    Dyer, M., ‘On some generalizations of the Kazhdan—Lusztig polynomials for Universal Coxeter groups’ (preprint).Google Scholar
  8. 8.
    Haddad, Z., ‘Infinite dimensional flag varieties’, thesis, M.I.T., 1984.Google Scholar
  9. 9.
    Kazhdan, D. and Lusztig, G., ‘Representation of Coxeter groups and Hecke algebras’, Invent. Math. 53 (1979), 165–184.Google Scholar
  10. 10.
    Kazhdan, D. and Lusztig, G., ‘Schubert varieties and Poincaré duality’, Proc. Symp. Pure Math. 36 (1980), 185–203.Google Scholar
  11. 11.
    Lusztig, G., ‘Characters of reductive groups over a finite field’, Ann. Math. Stud. 107 (1984).Google Scholar
  12. 12.
    Lascoux, A. and Schutzenberger, M., ‘Polynomes de Kazhdan et Lusztig pour les grassmanniennes’, Asterisque 87–88 (1981), 249–266.Google Scholar
  13. 13.
    Zelevinski, A., ‘Small resolutions of singularities of Schubert varieties’, Funct. Anal. Appl. 17(2) (1983), 142–144.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Vinay V. Deodhar
    • 1
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations