Advertisement

Geometriae Dedicata

, Volume 7, Issue 1, pp 71–80 | Cite as

The law of sines for tetrahedra and n-simplices

  • Folke Eriksson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Allendoerfer, C., ‘Generalizations of Theorems about Triangles’, Math. Mag. 38, 253–259 (1965).Google Scholar
  2. 2.
    Carnot, L. N. M., Géométrie de Position, Paris, 1803.Google Scholar
  3. 3.
    Coxeter, H. S. M., Non-Euclidean Geometry, Toronto, 1942.Google Scholar
  4. 4.
    Dörband, W., ‘Determinantensätze und Simplexeigenschaften’, Math. Nachr. 44, 295–304 (1970).Google Scholar
  5. 5.
    Eriksson, F., ‘Sinus-och cosinusteoremen för tetraedrar och n-simplex’, Nord. Mat. Tidskr. 21, 129–137 (1973).Google Scholar
  6. 6.
    Euler, L., Nov. Comm. Petr. 4, 158 (1752–53).Google Scholar
  7. 7.
    Grassmann, H., Die Ausdehnungslehre, Berlin, 1862.Google Scholar
  8. 8.
    Joachimsthal, F., ‘Sur quelques applications des déterminants à la Géométrie’, J. Math. (Crelle) 40, 21–47 (1850).Google Scholar
  9. 9.
    Junghann, G., ‘Beiträge zur Tetraedrometrie’, Arch. Math. Phys. (Grunert) 34, 369–396 (1860).Google Scholar
  10. 10.
    Junghann, G., Tetraedrometrie I–II, Gotha, 1862–63.Google Scholar
  11. 11.
    d'Ovidio, E., ‘Le funzioni metriche fondamentali negli spazi di quante si vogliano dimensioni e di curvatura costante’, Mem. R. Acc. Lincei (3) 1, 929–986 (1877). (A shorter French version of this paper in Math. Ann. 12, 403–418 (1877).)Google Scholar
  12. 12.
    Schläfli, L., ‘Theorie der vielfachen Kontinuität’, in Ges. Math. Abh., vol. I, Basel, 1950.Google Scholar
  13. 13.
    Schoute, P.H., Mehrdimensionale Geometrie I, Leipzig, 1902.Google Scholar
  14. 14.
    Shilov, G., An Introduction to the Theory of Linear Spaces, Englewood Cliffs, 1961.Google Scholar
  15. 15.
    Sommerville, D.M.Y., An Introduction to the Geometry of n Dimensions, London, 1929.Google Scholar
  16. 16.
    Study, E., ‘Über Distanzrelationen’, Z. Math. Phys. 27, 140–155 (1882).Google Scholar

Copyright information

© D. Reidel Publishing Company 1978

Authors and Affiliations

  • Folke Eriksson
    • 1
  1. 1.Dept. of MathematicsChalmers University of Technology and the University of GöteborgGöteborgSweden

Personalised recommendations