Geometriae Dedicata

, Volume 9, Issue 3, pp 299–306 | Cite as

On surface area measures of convex bodies

  • Wolfgang Weil


The set Lj of jth-order surface area measures of convex bodies in d-space is well known for j=d−1. A characterization of Lj was obtained by Firey and Berg. The determination of Lj, for j∈{2, ..., d−2}, is an open problem. Here we show some properties of Lj concerning convexity, closeness, and size. Especially we prove that the difference set LjLj is dense (in the weak topology) in the set of signed Borel measures on the unit sphere which have barycentre 0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, A.D., ‘Zur Theorie der gemischten Volumina von konvexen Körpern I, II, III’ (Russian with German summary), Mat. Sbornik, N.S. 2 (1937), 947–972, 1205–1238; N.S. 3 (1938), 27–46.Google Scholar
  2. 2.
    Berg, C., ‘Corps convexes et potentiels sphériques’, Danske Vid. Selsk. Mat.-Fys. Medd. 37 (6), (1969), 1–64.Google Scholar
  3. 3.
    Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper, Springer, Berlin, 1934; reprint, Chelsea, New York, 1948.Google Scholar
  4. 4.
    Busemann, H., Convex Surfaces, Interscience Publishers, New York, 1958.Google Scholar
  5. 5.
    Fenchel, W. and Jessen, B., ‘Mengenfunktionen und konvexe Körper’, Danske Vid. Selsk. Mat.-Fys. Medd. 16 (3), (1938), 1–31.Google Scholar
  6. 6.
    Firey, W.J., ‘The Determination of Convex Bodies from their Mean Radius of Curvature Functions’, Mathematika 14 (1967), 1–13.Google Scholar
  7. 7.
    Firey, W.J., ‘Christoffel's Problem for General Convex Bodies’, Mathematika 15 (1968), 7–21.Google Scholar
  8. 8.
    Firey, W.J., ‘Intermediate Christoffel-Minkowski Problems for Figures of Revolution’, Israel J. Math. 8 (1970), 384–390.Google Scholar
  9. 9.
    Firey, W.J., ‘Local Behaviour of Area Functions of Convex Bodies’, Mathematika 19 (1972), 205–212.Google Scholar
  10. 10.
    Firey, W.J., ‘Some Open Questions on Convex Surfaces’, Proc. Int. Congr. Math., Vancouver 1974, Vol. 1 (1975), 479–484.Google Scholar
  11. 11.
    Schneider, R., ‘Kinematische Berührmaße für konvexe Körper und Integralrelationen für Oberflächenmaße’, Math. Ann. 218 (1975), 253–267.Google Scholar
  12. 12.
    Schneider, R., ‘Das Christoffel-Problem für Polytope’, Geom. Dedicata 6 (1977), 81–85.Google Scholar
  13. 13.
    Weil, W. ‘Centrally Symmetric Convex Bodies and Distributions II’, Israel J. Math. 32 (1979), 173–182.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Wolfgang Weil
    • 1
  1. 1.Inst. f. Math. StochastikAlbert-Ludwigs-UniversitätFreiburgW. Germany

Personalised recommendations