Advertisement

The clinical investigator

, Volume 70, Issue 9, pp 816–824 | Cite as

Oscillations: a key event in transformed renal epithelial cells

  • H. Oberleithner
  • A. Schwab
  • H. -J. Westphale
  • L. Wojnowski
Guest Lecture, “Gessellschaft für Nephrologie”, 23rd Congress

Summary

Intracellular pH (pHi) plays a critical role in the entry of cells into the DNA-synthesis phase of the cell cycle. Alterations in pHi may contribute to abnormal proliferative responses such as those seen in tumorigenic cells. We observed that alkaline stress leads to genomic transformation of Madin-Darby canine kidney (MDCK) cells. Transformed cells (F cells) form “foci” in culture, lack contact inhibition, and are able to migrate, typical characteristics of dedifferentiated tumorigenic cells. F cells exhibit spontaneous biorhythmicity. Rhythmic transmembrane Ca2+ flux activates plasma membrane K+ channels and Na+/H+ exchange. This leads to periodic changes of membrane voltage and pHi at about one cycle per minute. We conclude that endogenous oscillatory activity could be a trigger mechanism for DNA synthesis, proliferation, and abnormal growth of renal epithelial cells in culture.

Key words

MDCK cell Intracellular pH Intracellular Ca2+ K+ channel Oscillation Cell transformation 

Abbreviations

CICR

calcium-induced calcium release

IP3a

inositol triphosphate

MDCK

Madin-Darby canine kidney

pHia

intracellular pH

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biermann AJ, Cragoe EJ, De Laat SW, Moolenaar WH (1988) Bicarbonate determines cytoplasmic pH and suppresses mitogen-induced alkalinization. J Biol Chem 263:1523–1526.Google Scholar
  2. 2.
    Doppler W, Jaggi R, Groner B (1987) Induction of v-mos and activated Ha-ras oncogene expression in quiescent NIH 3T3 cells causes intracellular alkalinization and cell-cycle progression. Gene 54:147–153.CrossRefGoogle Scholar
  3. 3.
    Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224.CrossRefGoogle Scholar
  4. 4.
    Gillies RJ, Martinez-Zaguilan R, Martinez GM, Serrano R, Perona R (1990) Tumorigenic 3T3 cells maintain an alkaline pH under physiological conditions. Proc Natl Acad Sci USA 87:7414–7418.CrossRefGoogle Scholar
  5. 5.
    Ghosh TK, Eis PS, Mullaney JM, Ebert CL, Gill DL (1988) Competitive, reversible and potent antagonism of inositol 1,4,5-triphosphate-activated calcium release by heparin. J Biol Chem 263:11075–11079.PubMedGoogle Scholar
  6. 6.
    Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465.CrossRefGoogle Scholar
  7. 7.
    Grinstein S (1988) Na+/H+ exchange. CRC Press, Florida.Google Scholar
  8. 8.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100.CrossRefGoogle Scholar
  9. 9.
    Hesketh TR, Moore JP, Morris JDH, Taylor MV, Rogers J, Smith GA, Metcalf JC (1985) A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313:481–484.CrossRefGoogle Scholar
  10. 10.
    Iijima K, Lin L, Nasjletti A, Goligorsky MS (1991) Intracellular ramification of endothelin signal. Am J Physiol 260:C982-C992.CrossRefGoogle Scholar
  11. 11.
    Kao J, Harootunian A, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by Fluo-3. J Biol Chem 264:8179–8184.PubMedGoogle Scholar
  12. 12.
    Kersting U, Joha H, Steigner W, Gaßner B, Gstraunthaler G, Pfaller W, Oberleithner H (1988) Fusion of cultured dog kidney (MDCK) cells. I. Technique, fate of plasma membrane and cell nuclei. J Membr Biol 111:37–48.CrossRefGoogle Scholar
  13. 13.
    Kersting U, Wojnowski L, Steigner W, Oberleithner H (1991) Hypotonic stress-induced release of KHCO3 in fused renal epitheloid (MDCK) cells. Kidney Int 39:891–900.CrossRefGoogle Scholar
  14. 14.
    Kimura M, Gardner JP, Avio A (1990) Agonist evoked alkaline shift in the cytosolic pH set point for activation of Na+/H+ antiport in human platelets. J Biol Chem 265:21068–21074.PubMedGoogle Scholar
  15. 15.
    Kon V, Badr KF (1991) Biological actions and pathophysiological significance of endothelin in the kidney. Kidney Int 40:1–12.CrossRefGoogle Scholar
  16. 16.
    Lang F, Paulmichl M, Pfeilsehifter J, Friedrich F, Wöll E, Waldegger S, Ritter M, Tschernko E (1991) Cellular mechanism of bradykinin-induced hyperpolarization in renal epithelioid MDCK cells. Biochim Biophys Acta 1073:600–608.CrossRefGoogle Scholar
  17. 17.
    Leake RE, Trench ME, Barry JM (1972) Effect of cations on the condensation of hen erythrocyte nuclei and its relation to gene activation. Exp Cell Res 71:17–26.CrossRefGoogle Scholar
  18. 18.
    Libenson L, Jena M (1974) Extracellular pH and neoplastic transformations. Cancer Res 34:953–957.PubMedGoogle Scholar
  19. 19.
    Ober SS, Pardee AB (1987) Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts. Proc Natl Acad Sci USA, 84:2766–2770.CrossRefGoogle Scholar
  20. 20.
    Oberleithner H, Schuricht B, Wünsch S, Schneider S (1992) Role of H+ ions in DNA packing of epithelial cell nuclei. Pflügers Arch (submitted).Google Scholar
  21. 21.
    Oberleithner H, Westphale H-J, Gaßner B (1991) Alkaline stress transforms Madin-Darby canine kidney cells. Pflügers Arch 419:418–420.CrossRefGoogle Scholar
  22. 22.
    Oberleithner H, Wünsch S, Schneider S (1992) Patchy accumulation of apical Na+ transporters allows cross talk between extracellular space and cell nucleus. Proc Natl Acad Sci USA 89:241–245.CrossRefGoogle Scholar
  23. 23.
    Petersen O, Wakui O (1990) Oscillating intracellular Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: mechanism of generation. J Membr Biol 118:92–105.CrossRefGoogle Scholar
  24. 24.
    Rubin AL, Adam Y, Rubin H (1990) Relation of spontaneous transformation in cell culture to adaptive growth and clonal heterogeneity. Proc Nail Acad Sci USA 87:482–486.CrossRefGoogle Scholar
  25. 25.
    Sauvé R, Diarra H, Chahine M, Simoneau C, Garneau L, Roy G (1990) Single-channel and Fura-2 analysis of internal Ca2+ oscillations in HeLa cells: contribution of the receptor-evoked Ca2+ influx and effect of internal pH. Pflügers Arch 416:43–52.CrossRefGoogle Scholar
  26. 26.
    Schoenenberger O-A, Zuk A, Kendall D, Matlin KS (1991) Multilayering and loss of apical polarity in MDCK cells transformed with viral K-ras. J Cell Biol 112:873–889.CrossRefGoogle Scholar
  27. 27.
    Schwab A, Geibel J, Wang W, Oberleithner H, Giebisch G (1992) Mechanism of activation of K+ channels by minoxidil-sulfate in Madin-Darby canine kidney cells. J Membr Biol (submitted).Google Scholar
  28. 28.
    Thoenes W, Rumpelt HJ, Störkel S (1990) Klassifikation der Nierenzellkarzinome/Tumoren und ihre Beziehung zum Nephron-Sammelrohrsystem. Klin Wochenschr 68:1102–1118.CrossRefGoogle Scholar
  29. 29.
    Thornton JR (1981) High colonic pH promotes colorectal cancer. Lancet 1:1081–1083.CrossRefGoogle Scholar
  30. 30.
    Tsunoda U (1990) Cytosolc free calcium spiking affected by intracellular pH change. Exp Cell Res 188:294–301.CrossRefGoogle Scholar
  31. 31.
    Wilkes BM, Ruston AS, Mento P, Girardi E, Hart D, Van der Molen M, Barnett R, Nord P (1991) Characterization of endothelin 1 receptor and signal transduction mechanisms in rat medullary interstitial cells. Am J Physiol 260: F579-F589.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. Oberleithner
    • 1
  • A. Schwab
    • 1
  • H. -J. Westphale
    • 1
  • L. Wojnowski
    • 1
  1. 1.Physiologisches Institut der Universität WürzburgWürzburgGermany

Personalised recommendations