, Volume 42, Issue 5, pp 376–385

Exon-intron organization of Xenopus MHC class II β chain genes

  • Fumiko Kobari
  • Keisuke Sato
  • Benny P. Shum
  • Shin Tochinai
  • Makoto Katagiri
  • Terou Ishibashi
  • Louis Du Pasquier
  • Martin F. Flajnik
  • Masanori Kasahara
Original Paper


The ampibian Xenopus laevis is the most primative vertebrate in which the major histocompatibility complex (MHC) has been defined at the biochemical, functional, and molecular genetic levels. We previously described the isolation and characterization of cDNA clones encoding X. laevis MHC class II β chains. In the present study, genomic clones encoding class II β chains were isolated from X. laevis homozygous for the MHC f haplotype. Three class II β chain genes, designed Xela-DAB, Xela-DBB, and Xela-DCB, were identified. Seqeunce analysis of these genes showed that Xela-DBB and Xela-DCB corresponding to the previously characterized cDNA clones F3 and F8, respectively, whereas Xela-DAB encodes a third, hitherti unidentified class II β chain of the MHC f haplotype. As a representative of X. laevis class II β chain genes, the Xela-DAB gene underwent detailed structural analysis. In addition,the nucleotide sequence of Xela-DABf cDNA clones was determined. The Xela-DAB gene is made up of a least six exons, with an exon-intron organization similar to that of a typical mammalian class II β chain gene. The 5′-flanking region of the Xela-DAB gene contains transcriptional control elements known as X1, X2, and Y, but lacks typical TATA or CCAAT boxes. A notable feature of the X. laevis class II β chain genes is that sizes of the introns are larger than those of their mammalian counterparts. As assessed by northern blot analysis, the three class II β chain genes had similar expression patterns, with the highest level of transcription detected in the intestine. Identification of the Xela-DAB,-DBB, and -DCB genes is consistent with our previous observations, which suggested that the MHC of the tettraploid frog X. laevis is diploidized at the genomic level and contains three class II β chain genes per haplotype that cross-hybridize to one another under reduced stringency conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G., Larhammar, D., Widmark, E., Servenius, B., Peterson, P. A., and Rask, L. Class II genes of the human major histocompatibility complex. Organization and evolutionary relationship of DRβ genes. J Biol Chem 262: 8748–8758, 1987Google Scholar
  2. Barnes, W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Scie USA 91: 2216–2220, 1994Google Scholar
  3. Beato, M. Gene regulation by steroid hormones. Cell 56: 335–344, 1989Google Scholar
  4. Benoist, C. and Mathis, D. Regulation of major histocompatibility complex class-II genes: X, Y, and other letters of alphabet. Annu Rev Immunol 8: 681–675, 1990Google Scholar
  5. Bisbee, C. A., Baker, M. A., Wilson, A. C., Hadji-Azimi, I., and Fischberg, M.. Albumin phylogeny for clawed frogs (Xenophus). Science 195: 785–787, 1977Google Scholar
  6. Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 346: 33–39, 1993Google Scholar
  7. Du Pasquier, L., Miggiano, V. C., Kobel, H. R., and Fischberg, M. The genetic control of histocompatibility reactions in natural and laboratory-made polyploid individuals of the clawed toad Xenophus. Immunogenetics 5: 129–141, 1977Google Scholar
  8. Du Pasquier, L., Schwager, J., and Flajnik, M. F. The immune system of Xenophus. Annu REv Immunol 7: 251–275, 1989Google Scholar
  9. Flajnik, M. F., Kaufman, J. F., Riegert, P., and Du Pasquiert, L. Identification of calss I major histocompatibility complex encoded molecules in the amphibian Xenophus. Immunogenetics 20: 433–442, 1984Google Scholar
  10. Flajnik, M. F., Kaufman, J. F., Hsu, E., Manes, M., Parisot, R., and Du Pasquier, L. Major histocompatibility complex-method class I molecules are absent un immunoologicaly competent Xenophus before metamorphosis. J Immunol 137: 3891–3899, 1986Google Scholar
  11. Flajnik, M. F. and Du Pasquier, L. The major histocompatibility complex of frogs. Immunol Rev 113: 47–63, 1990Google Scholar
  12. Flajnik, M. F., Canel, C., Kramer, J., and Kasahara, M. Evolution of the major histocompatibility complex: Molecular cloning of major histocompatibility complex class I from the amphibian Xenophus. Proc Natl Acad Sci USA 88: 537–541, 1991Google Scholar
  13. Flajnik, M. F., Kasahara, M., Shum, B. P., Salter-Cid, L., Taylor, E., and Du Pasquier, L. A novel type of class I gene organaization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenophus. EMBO J 12: 4385–4396, 1993Google Scholar
  14. Frohman, M. A., Dush, M. K., and Martin, G. R. Rapid production of full-lenght cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–9002, 1988PubMedGoogle Scholar
  15. Hood, L., Steinmetz, M., and Malissen, B. Genes of the histocompatibility complex of the mouse. Annu Rev Immunol 1: 529–568, 1983Google Scholar
  16. Jonsson, A.-K., Hyldig-Nielsen, J.-J., Servenius, B., Larhammar, D., Andersson, G., Jörgensen, F., Peterson, P. A., and Rask, L. Class II genes of the human major histocompatibility complex. Comparisons of the DQ and DX α and ß genes. J Biol Chem 262: 8768–8777, 1987Google Scholar
  17. Kandil, E., Noguchi, M., Isibashi, T., and Kasahara, M. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene. J Immunol 154: 5907–5918, 1995Google Scholar
  18. Kasahara, M., Figueroa, F., and Klein, J. Random cloning of genes from mouse chromosome 17. Proc Natl Acad Sci USA 84: 3325–3328, 1987Google Scholar
  19. Kasahara, M., Canel, C., McKinney, E. C., and Flajnik, M. Molecular cloning of nurse shark cDNAs with high sequence similarity to nucleoside diphosphate kinase genes. In J. Klein and D. Klein (eds.): Molecular Evolution of the Major Histocompatibility Complex. pp. 491–499, Springer, Berlin, 1991Google Scholar
  20. Kasahara, M., Flajnik, M. F., Ishibashi, T., and Natori, T. Evolution of the major histocompatibility complex: a current overview. Transplant Immunol 3: 1–20, 1995Google Scholar
  21. Kaufman, J. F., Flajnik, M. F., Du Pasquier, P., and Riegert, P. Xenopus MHC class II molecules. I. Identification and structural characterization. J Immunol 134: 3248–3257, 1985aGoogle Scholar
  22. Kaufman, J. F., Flajnik, M. F., and Du Pasquier, L. Xenopus MHC class II molecules. II. Polymorphism as determined by two-dimensional gel electrophoresis. J Immunol 134: 3258–3264, 1985bGoogle Scholar
  23. Kelly, A. and Trowsdale, J. Complete nucleotide sequence of a functional HLA-DPß gene and the region between the DPß1 and DPα1 genes: comparison of the 5' ends of HLA class II genes. Nucleic Acids Res 13: 1607–1621, 1985Google Scholar
  24. Klein, J. Natural History of the Major Histocompatibility Complex, John Wiley and Sons, New York, 1986Google Scholar
  25. Klein, J., Bontrop, R. E., Dawkins, R. L., Erlich, H. A., Gyllensten, U. B., Heise, E. R., Jones, P. P., Parham, P., Wakeland, E. K., and Watkins, D. I. Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 32: 217–219, 1990PubMedGoogle Scholar
  26. Klein, J., Ono, H., Klein, D., and Oh'Uigin, C. The accordion model of Mhc evolution. In J. Gergely and G. Petranyi (eds.): Progress in Immunology, Vol 8, pp. 137–143, Springer, Heidelberg, 1993Google Scholar
  27. Kobel, H. R. and Du Pasquier, L. Genetics of polyploid Xenopus. Trends Genet 2: 310–315, 1986Google Scholar
  28. Kozak, M. Compilation and analysis of sequences upstream from the translational start site in eukaryotik mRNAs. Nuclei Acids Res 12: 857–872, 1984Google Scholar
  29. Lawlor, D. A., Zemmour, J., Ennis, P. D., and Parham, P. Evolution of class-I MHC genes and proteins: from natural selection to thymic selection. Annu Rev Immunol 8: 23–63, 1990Google Scholar
  30. Mount, S. M.. A. A catalogue of splice junction sequences. Nulceic Acids Res 10: 459–472, 1982Google Scholar
  31. Ochman, H., Medhora, M. M., Garza, D., and Hartl, D. L. Amplification of flanking sequences by inverse PCR. In M. S. Innis, D. H. Gefand, J. J. Sninsky, and T. J. White (eds.): PCR Protocols. A Guide to Methods and Applications, pp. 219–227, Academic Press, San Diego, 1990Google Scholar
  32. Ono, H., O'hUigin, C., Vincek, V., and Klein, J. Exon-intron organization of fish major histocompatibility complex class II B genes. Immunogenetics 38: 223–234, 1993aGoogle Scholar
  33. Ono, H., O'hUigin, C., Vincek, V., Stet, R. J. M., Figueroa, F., and Klein, J. New ß chain-encoding Mhc class II genes in the carp. Immunogenetics 38: 149–149, 1993bGoogle Scholar
  34. Patient, R. K., Elkington, J. A., Kay, R. M., and Williams, J. G. Internal organization of the major adult α-and ß-globin genes of X. laevis. Cell 21: 565–573, 1980Google Scholar
  35. Rackwitz, H. R., Zehetner, G., Frischauf, A.-M., and Lehrach, H. Rapid restriction mapping of DNA cloned in phage vectors. Gene 30: 195–200, 1984Google Scholar
  36. Radley, E., Alderton, R. P., Kelly, A., Trowsdale, J., and Beck, S. Genomic organization of HLA-DMA and HLA-DMB. Comparison of the gene organization of all six class II families in the human majot histocompatibility complex. J Biol Chem 269: 18 834–18 838, 1994Google Scholar
  37. Rammensee, H.-G., Falk, K., and Rötzchke, O. MHC molecules as peptide receptors. Curr Opin Immunol 5: 35–44, 1993Google Scholar
  38. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988PubMedGoogle Scholar
  39. Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989Google Scholar
  40. Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. proc Natl Acad Sci USA 74: 5463–5467, 1977PubMedGoogle Scholar
  41. Sato, K., Flajnik, M. F., Du Pasquier, L., Katagiri, M., and Kasahara, M. Evolution of the MHC: Isolation of class II ß-chain cDNA clones from the amphibian Xenopus laevis. J Immunol 150: 2831–2843, 1993Google Scholar
  42. Schwager, J., Grossberger, D., and du Pasquier, L. Organization and rearrangement of immunoglobulin M genes in the amphibian Xenopus. EMBO J 7: 2409–2415, 1988Google Scholar
  43. Servenius, B., Rask, L., Peterson, P. A. Class II genes of the human major histocompatibility complex. The DOß is a divergent member of the class II ß gene family. J Biol Chem 262: 8759–8766, 1987PubMedGoogle Scholar
  44. Shum, B. P., Avila, D. Du Pasquier, L., Kasahara, M., and Flajnik M. F. Isolation of a classical MHC class I cDNA from an amphibian: evidence for only one class I locus in the Xenopus MHC. J Immunol 151: 5376–5386, 1993Google Scholar
  45. Sültmann, H., Mayer, W. E., Figueroa, F., O'hUigin, C., and Klein, J. Organization of Mhc class II β genes in the Zebrafish (Brachydanio rerio). Genomics 23: 1–14, 1994CrossRefPubMedGoogle Scholar
  46. Takahata, N. MHC diversity and selection. Immunol Rev 143: 221–247, 1995Google Scholar
  47. Thiébaud, C. H. and Fischberg, M. DNA content in the genus Xenopus. Chromosoma (Berl.) 59: 253–257, 1977Google Scholar
  48. Trowsdale, J. “Both man & bird & beast”: comparative organization of MHC genes. Immunogenetics 41: 1–17, 1995Google Scholar
  49. Vilen, B. J., Coggswell, J. P., and Ting, J. P.-Y. Requirements for steriospecific alignment of the X and Y elements in MHC class II DRA function. Mol Cell Biol 11: 2406–2415, 1990Google Scholar
  50. Zoorob, R., Béhar, G., Kroemer, G., and Auffray, C. Organization of a functional chicken class II β gene. Immunogenetics 31: 179–187, 1990PubMedGoogle Scholar
  51. Zoorob, R., Bernot, A., Renoir, D. M., Choukri, F., and Auffray, C. Chicken major histocompatibility complex class II B genes: analysis of intraallelic and interlocus sequence variance. Eur J Immunol 23: 1139–1145, 1993PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Fumiko Kobari
    • 1
    • 2
  • Keisuke Sato
    • 3
  • Benny P. Shum
    • 4
  • Shin Tochinai
    • 2
  • Makoto Katagiri
    • 3
  • Terou Ishibashi
    • 1
  • Louis Du Pasquier
    • 5
  • Martin F. Flajnik
    • 4
  • Masanori Kasahara
    • 1
  1. 1.Department of BiochemistryHokkaido University School of MedicineSapporoJapan
  2. 2.Department of Biological SciencesHokkaido University Graduate School of ScienceSapporoJapan
  3. 3.Department of PathologyAsahikawa Medical CollegeAsahikawaJapan
  4. 4.Department of Microbiology and ImmunologyUniversoty of Miami School of MedicineMiamiUSA
  5. 5.Basel Institute for ImmunologyBaselSwitzerland
  6. 6.Department of Cell BiologyStanford University School of MedicineStanfordUSA

Personalised recommendations