, Volume 42, Issue 5, pp 315–322 | Cite as

Cloning and genomic characterization of LST1: a new gene in the human TNF region

  • Ingrid Holzinger
  • Annegret de Baey
  • Gerald Messer
  • Gerold Kick
  • Heinz Zwierzina
  • Elizabeth H. Weiss
Original Paper


The leucocyte specific transcript — 1 (LST1) represents the human homolog of the mouse B144 transcript, encoded within the tumor necrosis factor (TNF) region of the human major histocompatibility complex class III interval. The gene is localized about 4 kilobases upstream of the lymphotoxin ß gene. It spans a polymorphic genomic region encompassing the microsatellites TNFd and TNFe in intron 3 and a polymorphic Pvu II restriction site 260 base pairs downstream of the polyadenylation signal. Isolation of a full-length cDNA clone revealed that LST1 codes for IFN-γ-inducible 800 nt transcripts, which are present in lymphoid tissues, T cells, macrophages, and histiocyte cell lines. The cDNA contains three long open reading frames (ORF) with the most likely ORF encoding a transmembrane protein. Its close linkage to the TNF genes and pattern of expression point toward a possible role for LST1 in the immune response.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, L. J., Grimsley, G., Zhang, W. J., Degli-Esposti, M. A., and Dawkins, R. L. Polymorphism in the human B144 gene in different MHC haplotypes. Eur J Immunogenetics 19: 165–168, 1992Google Scholar
  2. Banerji, J., Sands, J., Strominger, J. L., and Spies, T. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci USA 87: 2374–2378, 1990Google Scholar
  3. Browning, J. L., Ngam-ek, A., Lawton, P., Demarinis, J., Tizard, R., Chow, E. P., Hession, C., O'Brine-Greco, B., Foley, S. F., and Ware, C. F. Lymphotoxin β a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72: 847–856, 1993Google Scholar
  4. Cameron, P. U., Tabarias, H. A., Pulendran, B., Robinson, W., and Dawkins, R. L. Conservation of the central MHC genome: PFGE mapping and RFLP analysis of complement, HSP70, and TNF genes in the goat. Immunogenetics 31: 253–264, 1990Google Scholar
  5. Carroll, M. C., Campbell, R. D., Bentley, D. R., and Porter, R. R. A molecular map of the human major histocompatibility complex class III region linking complement genes C4, C2 and factor B. Nature 307: 237–241, 1984Google Scholar
  6. Carroll, M. C., Katzman, P., Alicot, E. M., Koller, B. H., Geraghty, D. E., Orr, H. T., Strominger, J. L., and Spies, T. Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes. Proc Natl Acad Sci USA 84: 8535–8539, 1987Google Scholar
  7. Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987CrossRefPubMedGoogle Scholar
  8. De Baey, A., Holzinger, I., Scholz, S., Keller, E., Weiss, E. H., and Albert, E. Pvu II polymorphism in the human homologue of the mouse B144 (LST-1): a novel marker gene within the TNF region. Hum Immunol 42: 9–14, 1995Google Scholar
  9. Degli-Esposti, M. A., Abraham, L. J., McCann, V., Spies, T., Christiansen, F. T., and Dawkins, R. L. Ancestral haplotypes reveal the role of the central MHC in the immunogenetics of IDDM. Immunogenetics 36: 345–356, 1992Google Scholar
  10. Dunham, I., Sargent, C. A., Trowsdale, J., and Campbell, R. D. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis. Proc Natl Acad Sci USA 84: 7237–7241, 1987Google Scholar
  11. Dunham, I., Sargent, C. A., Kendall, E., and Campbell, R. D. Characterization of the class III region in different MHC haplotypes by pulsed-field gel electrophoresis. Immunogenetics 32: 175–182, 1990Google Scholar
  12. Faustman, D., Li, X. P., Lin, H. Y., Fu, Y. E., Eisenbarth, G., Avruch, J., and Guo, J. Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science 254: 1756–1761, 1991Google Scholar
  13. Feinberg, A. P. and Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13, 1983PubMedGoogle Scholar
  14. Grandy, D. K., Marchionni, M. A., Makam, H., Stofko, R. E., Alfano, M., Frothingham, L., Fischer, J. B., Burke-Howie, K. J., Bunzow, J. R., Server, A. C., and Civelli, O. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA 86: 9762–9766, 1989Google Scholar
  15. Hall, A. and Brown, R. Human N-ras: cDNA cloning and gene structure. Nucleic Acids Res 13: 5255–5268, 1985Google Scholar
  16. Imam, A. M. A., Ackrill, A. M., Dale, T. C., Kerr, I. M., and Stark, G. R. Transcription factors induced by interferons α and γ. Nucleic Acids Res 18: 6573–6580, 1990Google Scholar
  17. Jakob, C. O. and Hwang, F. Definition of microsatellite size variants for TNFa and Hsp 70 in autoimmune and nonautoimmune mouse strains. Immunogenetics 36: 182–188, 1992Google Scholar
  18. Jacob, C. O., mykytyn, K., and Tashman, N. DNA polymorphism in cytokine genes based on length variation in simple-sequence tandem repeats. Immunogenetics 38: 251–257, 1993Google Scholar
  19. Jurka, J. and Smith, T. A fundamental division in the alu family of repeated sequences. Proc Natl Acad Sci USA 85: 4775–4778, 1988Google Scholar
  20. Jurka, J. Novel families of interspersed repetitive elements from the human genome. Nucleic Acids Res 18: 137–141, 1990Google Scholar
  21. Jurka, J. and Milosavljevic, A. Reconstruction and analysis of human alu genes. J Mol Evol 32: 105–121, 1991Google Scholar
  22. Kaplan, D. J., Jurka, J., Solus, J. F., and Duncan, C. H. Medium reiteration frequency repetitive sequences in the human genome. Nucleic Acids Res 19: 4731–4738, 1991Google Scholar
  23. Kozak, M. Possible role of flanking nucleotides in recognition of the AUG initiation codon by eucaryotic ribosomes. Nucleic Acids Res 9: 5233–5252, 1981Google Scholar
  24. Kozak, M. Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res 12: 3873–3893, 1984Google Scholar
  25. Kozak, M. Bifunctional messenger RNAs in eukaryotes. Cell 47: 481–483, 1986aGoogle Scholar
  26. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292, 1986bCrossRefPubMedGoogle Scholar
  27. Kozak, M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol 7: 3438–3445, 1987Google Scholar
  28. Kozak, M. The scanning model for translation: an update. J Cell Biol 108: 229–241, 1989Google Scholar
  29. Lafuse, W. P., Lanning, D., Spies, T., and David, C. S. PFGE mapping and RFLP analysis of the S/D region of the mouse H-2 complex. Immunogenetics 36: 110–116, 1992Google Scholar
  30. Marais, R., Wynne, J., and Treisman, R. The SRF accessory protein elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393, 1993Google Scholar
  31. McGuire, W., Hill, A. V. S., Allsopp, C. E. M., Greenwood, B. M., and kwiatkowski, D. Variation in the TNF-α promoter region associated with susceptibility to cerebral malaria. Nature 371: 508–591, 1994CrossRefPubMedGoogle Scholar
  32. Memo, M. Pharmacological and molecular basis for dopamine D-2 receptor diversity. Mol Neurobiology 4: 181–196, 1990Google Scholar
  33. Messer, G., Spengler, U., Jung, M. C., Honold, G., Bloemer, K., Pape, G. R., Reithmüller, G., and Weiss, E. H. Polymorphic structure of the tumor necrosis factor (TNF) locus: an Nco I polymorphism in the first intron of the human TNF-β gene correlates with a variant amino acid in position 26 and a reduced level of TNF-β production. J Exp Med 173: 209–219, 1991Google Scholar
  34. Peabody, D. S., Subramani, S., and Berg, P. Effect of upstream reading frames on translation efficiency in simian virus 40 recombinants. Mol Cell Biol 6: 2704–2711, 1986Google Scholar
  35. Pociot, F., Briant, L., Jongeneel, C. V., Mölvig, J., Worsaae, H., Abbal, M., Thomsen, M., Nerup, J., and Cambon-Thomsen, A. Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-α and TNF-β by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23: 224–231, 1993PubMedGoogle Scholar
  36. Ragoussis, J., Bloemer, K., Pohla, H., Messer, G., Weiss, E. H., and Ziegler, A. A physical map including a new class I gene (cda12) of the human major histocompatibility complex (A2/B13 haplotype) derived from a monosomy 6 mutant cell line. Genomics 4: 301–308, 1989Google Scholar
  37. Rao, C. D., Igarashi, H., Chiu, I. M., Robbins, K. C., and Aaronson, S. A. Structure and sequence of the human c-sis/platelet-derived growth factor 2 (SIS/PDGF2) transcriptional unit. Proc Natl Acad Sci USA 83: 2392–2396, 1986Google Scholar
  38. Rembecki, R. M., Kumar, V., David, C. S., and Bennett, M. Bone marrow cell transplants involving intra-H-2 recombinant inbred mouse strains. Evidence that hemopoietic histocompatibility-1 (Hh-1) genes are distinct from H-2D or H-2L. J Immunol 141: 2253–2260, 1988Google Scholar
  39. Sargent, C. A., Dunham, I., Trowsdale, J., and Campbell, R. D. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III. EMBO J 8: 2305–2312, 1989Google Scholar
  40. Spies, T., Blanck, G., Bresnahan, M., Sands, J., and Strominger, J. L. A new cluster of genes within the human major histocompatibility complex. Science 243: 214–217, 1989aGoogle Scholar
  41. Spies, T., Bresnahan, M., and Strominger, J. L. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc Natl Acad Sci USA 86: 8955–8958, 1989bGoogle Scholar
  42. Tsuge, I., Shen, F. W., Steinmetz, M., and Boyse, E. A. A gene in the H-2S: H-2D interval of the major histocompatibility complex which is transcribed in B cells and macrophages. Immunogenetics 26: 378–380, 1987Google Scholar
  43. Tsujimoto, Y. and Croce, C. M. Analysis of the structure, transcripts, and protein products of bc1–2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 83: 5214–5218, 1986Google Scholar
  44. Udalova, I. A., Nedospasov, S. A., Webb, G. C., Chaplin, D. D., and Turetskaya, R. L. Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 16: 180–186, 1993Google Scholar
  45. Verjans, G. M. G. M., Messer, G., Weiss, E. H., Van-der-Linden, S. M., and Kijlstra, A. Polymorphism of the tumor necrosis factor region in relation to disease: an overview. Rheum Dis Clin North Am 18: 177–186, 1992Google Scholar
  46. Verweij, C. L., Diergaarde, P. J., Hart, M., and Pannekoeck, H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J 5: 1839–1847, 1986Google Scholar
  47. Weiss, E. H., Kuon, W., Doerner, C., Lang, M., and Riethmueller, G. Organization, sequence and expression of the HLA-B27 gene: a molecular approach to analyze HLA and disease associations. Immunobiology 170: 367–380, 1985Google Scholar
  48. Wilson, K. C. and Finbloom, D. S. Interferon gamma rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc gamma receptor. Proc Natl Acad Sci USA 89: 11 964–11 968, 1992Google Scholar
  49. Wroblewski, J. M., Kaminsky, S. G., Milisauskas, V. K., Pittman, A. M., Chaplin, D. D., Spies, T., and Nakamura, I. The B144-H-2D b interval and the location of a mouse homologue of the human D6S81E locus. Immunogenetics 32: 200–204, 1990Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Ingrid Holzinger
    • 1
  • Annegret de Baey
    • 2
  • Gerald Messer
    • 3
  • Gerold Kick
    • 3
  • Heinz Zwierzina
    • 1
  • Elizabeth H. Weiss
    • 2
  1. 1.University Hospital for Internal MedicineUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute for Anthropology and Human GeneticsUniversity of MunichMunichGermany
  3. 3.Department of DermatologyUniversity of MunichMunichGermany

Personalised recommendations