Journal of Biomolecular NMR

, Volume 4, Issue 3, pp 307–324 | Cite as

Three-dimensional structure of echistatin and dynamics of the active site

  • Yuan Chen
  • Asif K. Suri
  • Dorothea Kominos
  • Gautam Sanyal
  • Adel M. Naylor
  • Steven M. Pitzenberger
  • Victor M. Garsky
  • Ronald M. Levy
  • Jean Baum
Research Papers


The snake venom protein echistatin contains the cell recognition sequence Arg-Gly-Asp and is a potent inhibitor of platelet aggregation. The three-dimensional structure of echistatin and the dynamics of the active RGD site are presented. A set of structures was determined using the Distance Geometry method and subsequently refined by Molecular Dynamics and energy minimization. Disulfide pairings are suggested, based on violations of experimental constraints. The structures satisfy 230 interresidue distance constraints, derived from nuclear Overhauser effect measurements, five hydrogen-bonding constraints, and 21 torsional constraints from vicinal spin-spin coupling constants. The segment from Gly5 to Cys20 and from Asp30 to Asn42 has a well-defined conformation and the Arg-Gly-Asp sequence, which adopts a turn-like structure, is located at the apex of a nine-residue loop connecting the two strands of a distorted β-sheet. The mobility of the Arg-Gly-Asp site has been quantitatively characterized by 15N relaxation measurements. The overall correlation time of echistatin was determined from fluorescence measurements, and was used in a model-free analysis to determine internal motional parameters. The active site has order parameters of 0.3–0.5, i.e., among the smallest values ever observed at the active site of a protein. Correlation of the flexible region of the protein as characterized by relaxation experiments and the NMR solution structures was made by calculating generalized order parameters from the ensemble of three-dimensional structures. The motion of the RGD site detected experimentally is more extensive than a simple RGD loop ‘wagging’ motional model, suggested by an examination of superposed solution structures.


Echistatin Structure Dynamics Arg-Gly-Asp (RGD) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, M., Lazarus, R.A., Dennis, M.S. and Wagner, G. (1991) Science, 253, 445–448.Google Scholar
  2. AnilKumar, Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.Google Scholar
  3. Armant, D.R., Kaplan, H.A., Mover, H. and Lennarz, W.J. (1986) Proc. Natl. Acad. Sci. USA, 83, 6751–6755.Google Scholar
  4. Aumailley, M., Gurrath, M., Muller, G., Calvete, J., Timpl, R. and Kessler, H. (1991) FEBS Lett., 291, 50–54.Google Scholar
  5. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.Google Scholar
  6. Berglund, H., Kovacs, H., Dahlman-Wright, K., Gustafsson, J. and Hard, T. (1992) Biochemistry, 31, 12001–12011.Google Scholar
  7. Bogusky, M.J., Naylor, A.M., Pitzenberger, S.M., Nutt, R.F., Brady, S.F., Colton, C.D., Sisko, J.T., Anderson, P.S. and Veber, D.F. (1992) Int. J. Pept. Protein Res., 39, 63–76.Google Scholar
  8. Bogusky, M.J., Naylor, A.M., Mertzman, M.E., Pitzenberger, S.M., Nutt, R.F., Brady, S.F., Colton, C.D. and Veber, D.F. (1993) Biopolymers, 33, 1287–1297.Google Scholar
  9. Bush, L.R., Holahan, M.A., Kanovsky, S.M., Mellott, M.J., Garsky, V.M. and Gould, R.J. (1989) Circulation, 80, 11–23.Google Scholar
  10. Calvete, J.J., Wang, Y., Mann, K., Schafer, W., Niewiarowski, S., and Stewart, G.J. (1992) FEBS Lett., 309, 316–320.Google Scholar
  11. Chen, Y., Pitzenberger, S.M., Garsky, V.M., Lumma, P.K., Sanyal, G. and Baum, J. (1991) Biochemistry, 30, 11625–11636.Google Scholar
  12. Cheresh, D.A. (1985) Proc. Natl. Acad. Sci. USA, 84, 6471–6475.Google Scholar
  13. Clore, G.M., Nilges, M., Sukumaran, D.K., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) EMBO J., 5, 2729–2735.Google Scholar
  14. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990a) J. Am. Chem. Soc., 112, 4989–4991.Google Scholar
  15. Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990b) Biochemistry, 29, 7387–7401.Google Scholar
  16. Clore, G.M. and Gronenborn, A.M. (1991a) Prog. NMR Spectrosc., 23, 43–92.Google Scholar
  17. Clore, G.M. and Gronenborn, A.M. (1991b) Science, 252, 1390–1399.Google Scholar
  18. Coller, B.S. (1985) J. Clin. Invest., 76, 101–108.Google Scholar
  19. Coller, B.S., Folts, J.D., Smith, S.R., Scudder, L.E. and Jordan, R. (1989) Circulation, 80, 1766–1774.Google Scholar
  20. Cooke, R.M., Carter, B.G., Martin, D.M.A., Murray-Rust, P. and Weir, M.P. (1991) Eur. J. Biochem., 202, 323–328.Google Scholar
  21. Cooke, R.M., Carter, B.G., Murray-Rust, P., Harsborn, M.J., Herzyk, P. and Hubbard, R.E. (1992) Protein Eng., 5, 473–477.Google Scholar
  22. Dalvit, C., Widmer, H., Bovermann, G., Breckenridge, R. and Metternich, R. (1991) Eur. J. Biochem., 202, 315–321.Google Scholar
  23. Dennis, M.S., Henzel, W.J., Pitti, R.M., Lipari, M.T., Napier, M.A., Deisher, T.A., Bunting, S. and Lazarus, R.A. (1990) Proc. Natl. Acad. Sci. USA, 87, 2471–2475.Google Scholar
  24. Duband, J.-L., Rocher, S., Chen, W.-T. and Yamada, K.M. (1986) Science, 233, 467–470.Google Scholar
  25. Gan, Z.-R., Gould, R.J., Jacobs, J.W., Friedman, P.A. and Polokoff, M.A. (1988) J. Biol. Chem., 263, 19872–19832.Google Scholar
  26. Gardner, J.M. and Hynes, R.O. (1985) Cell, 42, 439–448.Google Scholar
  27. Garsky, V.M., Lumma, P.K., Freidinger, R.M., Pitzenberger, S.M., Randall, W.C., Veber, D.F., Gould, R.J. and Friedman, P.A. (1989) Proc. Natl. Acad. Sci. USA, 86, 4022–4026.Google Scholar
  28. Genest, M., Marion, D., Caille, A. and Ptak, M. (1989) Colloq. INSERM, Forum Pept., 174, 415–418.Google Scholar
  29. Gold, H.K., Coller, B.S., Yasuda, T., Saito, T., Fallon, J.T., Guerrero, R.C., Zinskinbd, A.A. and Collen, D. (1988) Circulation, 77, 670–677.Google Scholar
  30. Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.-E., Holt, J.C., Cook, J.T. and Niewiarowski, S. (1990) Proc. Soc. Exp. Biol. Med., 195, 168–171.Google Scholar
  31. Gray, W.R. (1993) Protein Sci., 2, 1749–1755.Google Scholar
  32. Hemler, M.E. (1990) Annu. Rev. Immunol., 8, 365–400.Google Scholar
  33. Holak, T.A., Gondol, D., Otlewski, J. and Wilusz, T. (1989) J. Mol. Biol., 210, 635–648.Google Scholar
  34. Huang, T.-F., Holt, J.C. and Lukasiewicz, S. (1987) J. Biol. Chem., 262, 16157–16163.Google Scholar
  35. Humphries, M.J., Olden, K. and Yamada, K.M. (1986) Science, 233, 467–470.Google Scholar
  36. Hyberts, S.G., Goldberg, M.S., Havel, T.F. and Wagner, G. (1992) Protein Sci., 1, 736–751.Google Scholar
  37. Hynes, O.R. (1987) Cell, 48, 549–554.CrossRefPubMedGoogle Scholar
  38. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  39. Kitchen, D.B., Hirata, F., Westbrook, J.D., Levy, R.M., Kofke, D. and Yarmush, M. (1990) J. Comput. Chem., 11, 1169–1180.Google Scholar
  40. Kominos, D., Bassolino, D.A., Levy, R.M. and Pardi, A. (1990) Biopolymers, 29, 1807–1822.Google Scholar
  41. Kordel, J., Skelton, N.J., Akke, M., Palmer, A.G. and Chazin, W.J. (1992) Biochemistry, 31, 4856–4866.Google Scholar
  42. Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 945–949.Google Scholar
  43. Lakowicz, J.R. (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York, NY.Google Scholar
  44. Lakowicz, J.R., Laczko, G., Cherek, H., Gratton, E. and Limkeman, M. (1984) Biophys. J., 46, 463–477.Google Scholar
  45. Levy, R.M., Karplus, M. and Wolynes, P.G. (1981) J. Am. Chem. Soc., 103, 5998–6012.Google Scholar
  46. Levy, R.M., Bassolino, D.A. and Kitchen, D.B. (1989) Biochemistry, 28, 9361–9372.Google Scholar
  47. Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  48. Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.Google Scholar
  49. Mach, H., Middaugh, C.R. and Lewis, R.V. (1992) Anal. Biochem., 200, 74–80.Google Scholar
  50. Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.Google Scholar
  51. Marion, D. and Bax, A. (1988) J. Magn. Reson., 80, 528–533.Google Scholar
  52. McDowell, R.S. and Gadek, T.R. (1992) J. Am. Chem. Soc., 114, 9245–9253.Google Scholar
  53. McGoff, M.A., Allen, B.T., Sicard, G.A., Anderson, C.B. and Santoro, S.A. (1989) Circulation, 80, 11–23.Google Scholar
  54. Mickos, H., Bahr, J. and Luning, B. (1990) Acta Chem. Scand., 44, 161–164.Google Scholar
  55. Mizutani, R., Shimada, I., Ueno, Y., Yoda, M., Kumagai, H. and Arata, Y. (1992) Biochem. Biophys. Res. Commun., 182, 966–973.Google Scholar
  56. Mueller, L. and Ernst, R.R. (1979) Mol. Phys., 38, 963–992.Google Scholar
  57. Mueller, L. (1987) J. Magn. Reson., 72, 191–196.Google Scholar
  58. Negre, E., Marion, D., Roche, A.C., Monsigny, M. and Mayer, R. (1989) Colloq. INSERM, Forum Pept., 174, 575–578.Google Scholar
  59. Nirmala, N.K. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.Google Scholar
  60. Otting, G. and Wüthrich, K. (1987) J. Magn. Reson., 75, 546–549.Google Scholar
  61. Ouaissi, M.A., Cornette, J., Afchain, D., Capron, A., Gras-Massa, H. and Tartar, A. (1986) Science, 234, 603–607.Google Scholar
  62. PalmerIII, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.Google Scholar
  63. Peishoff, C.E., Ali, F.E., Bean, J.W., Calvo, R., D'Ambrosio, C.A., Eggleston, D.S., Hwang, S.M., Kline, T.P., Koster, P.F., Nichols, A., Powers, D., Romoff, T., Samanen, J.M., Stadel, J., Vasko, J.A. and Kopple, K.D. (1992) J. Med. Chem., 35, 3962–3969.Google Scholar
  64. Peng, J. and Wagner, G. (1992) Biochemistry, 31, 8671–8686.Google Scholar
  65. Plow, E.F., Ginsberg, M.H. and Marguerie, G.A. (1986) In Biochemistry of Platelets (Eds, Philips, D.R. and Shuman, M.A.) Academic Press, New York, NY, pp. 225–256.Google Scholar
  66. Powers, R., Clore, G.M., Stahl, S.J., Wingfield, P.T. and Gronenborn, A. (1992) Biochemistry, 31, 9150–9157.Google Scholar
  67. Pytela, R.M., Pierschbacher, M.D., Ginsberg, M.H., Plow, E.F. and Ruoslahti, E. (1986) Science, 231, 1559–1562.Google Scholar
  68. Redfield, A.G. and Kunz, S.D. (1975) J. Magn. Reson., 19, 250–254.Google Scholar
  69. Redfield, C., Boyd, J., Smith, L.J., Smith, R.A.G. and Dobson, C.M. (1992) Biochemistry, 31, 10431–10437.Google Scholar
  70. Reed, J., Hull, W.E., Von derLieth, C.-W., Kubler, D., Suhai, S. and Kinzel, V. (1988) Eur. J. Biochem., 178, 141–154.Google Scholar
  71. Ruoslahti, E. and Pierschbacher, M.D. (1986) Cell, 44, 517–518.Google Scholar
  72. Ruoslahti, E. and Pierschbacher, M.D. (1987) Science, 238, 491–497.Google Scholar
  73. Sato, M., Sardana, M.K., Grasser, W.A., Garsky, V.M., Murray, J.M. and Gould, R.J. (1990) J. Cell Biol., 111, 1713–1723.Google Scholar
  74. Saudek, V., Atkinson, R.A. and Pelton, J.T. (1991a) Biochemistry, 30, 7369–7372.Google Scholar
  75. Saudek, V., Atkinson, R.A., Lepace, P. and Pelton, J.T. (1991b) Eur. J. Biochem., 202, 329–338.Google Scholar
  76. Schneider, D.M., Dellwo, M.J. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.Google Scholar
  77. Shebuski, R.J., Ramjit, D.R., Bencen, G.H. and Polokoff, M.A. (1989a) J. Biol. Chem., 264, 21550–21556.Google Scholar
  78. Shebuski, R.J., Berry, D.E., Bennett, D.B., Romoff, T., Storer, B.L., Ali, F. and Samanen, J. (1989b) Thromb. Haemostasis, 61, 183–188.Google Scholar
  79. Siahaan, T.J., Chakrabarti, S. and Van derVelde, D. (1992) Biochem. Biophys. Res. Commun., 187, 1042–1047.Google Scholar
  80. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  81. Stone, M.J., Fairbrother, W.J., PalmerIII, A.G., Reizer, J., Saier, M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.Google Scholar
  82. Stone, M.J., Chandrasekhar, K., Holmgren, A., Wright, P. and Dyson, J.H. (1993) Biochemistry, 32, 426–435.Google Scholar
  83. Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Gō, N. and Wüthrich, K. (1987) J. Mol. Biol., 196, 611–639.Google Scholar
  84. Wagner, G., Hyberts, S.G. and Havel, T.F. (1992) Annu. Rev. Biophys. Biomol. Struct., 21, 167–198.Google Scholar
  85. Weast, R.C. (Ed.) (1975) Handbook of Chemistry and Physics, 56th ed., CRC Press, Boca Raton, FL, p. F-49.Google Scholar
  86. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.Google Scholar
  87. Yasuda, T., Gold, H.K., Fallon, J.T., Leinbach, R.H., Guerrero, J.L., Scudder, L.E., Kanke, M., Sheahly, D., Ross, M.J., Collen, D. and Coller, B.S. (1988) J. Clin. Invest., 81, 1284–1291.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1994

Authors and Affiliations

  • Yuan Chen
    • 1
  • Asif K. Suri
    • 1
  • Dorothea Kominos
    • 1
  • Gautam Sanyal
    • 2
    • 3
    • 4
  • Adel M. Naylor
    • 2
    • 3
    • 4
  • Steven M. Pitzenberger
    • 2
    • 3
    • 4
  • Victor M. Garsky
    • 2
    • 3
    • 4
  • Ronald M. Levy
    • 1
  • Jean Baum
    • 1
  1. 1.Chemistry DepartmentRutgers UniversityPiscatawayUSA
  2. 2.Department of Medicinal ChemistryMerck Research LaboratoriesWest PointUSA
  3. 3.Department of Molecular SystemsMerck Research LaboratoriesWest PointUSA
  4. 4.Department of Pharmaceutical ResearchMerck Research LaboratoriesWest PointUSA

Personalised recommendations