Applied Microbiology and Biotechnology

, Volume 41, Issue 5, pp 584–590 | Cite as

Flow cytometry studies of recombinant Escherichia coli in batch and continuous cultures: DNA and RNA contents; light-scatter parameters

  • P. Fouchet
  • C. Manin
  • H. Richard
  • G. Frelat
  • J. N. Barbotin
Applied Genetics and Regulation Original Paper


Flow cytometry has been used to study the contents of macromolecular compounds and light-scatter parameters in batch and continuous cultures of a recombinant Escherichia coli strain that forms protein inclusion bodies. Changes in relative DNA and RNA contents and cell mass as estimated by forward-angle light scatter were detected and tightly correlated in batch culture. In addition, heterogeneity of wide-angle light scatter (WALS), which we related to the presence of cellular inclusion bodies, was observed. In contrast, the relative RNA content and cell mass did not change during continuous culture, and homogeneity of WALS was found. In addition, unexpected changes in relative DNA content were observed after 67 h of culture, indicating a change in bacterial physiology.


Cell Mass Inclusion Body Batch Culture Continuous Culture Light Scatter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey J (1993) Host-vector interactions in Escherichia coli. Adv Biochem Eng Biotechnol 48:29–52Google Scholar
  2. Barbotin J, Sayadi S, Nasri M, Berry F, Thomas D (1990) Improvement of plasmid stability by immobilization of recombinant microorganisms. Ann NY Acad Sci 589:41–53Google Scholar
  3. Boye E, Steen H, Skarstad K (1983) Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol 129:973–980Google Scholar
  4. Brownlie L, Stephenson JR, Cole JA (1990) Effect of growth rate on plasmid maintenance by Escherichia coli HB101 (pAT153). J Gen Microbiol 136:2471–2480Google Scholar
  5. De Taxis du Poët P, Dhulster P, Barbotin J, Thomas D (1986) Plasmid inheritability and biomass production: comparison between free and immobilized cell cultures of Escherichia coli BZ18/pTG201, without selection pressure. J Bacteriol 165:871–877Google Scholar
  6. Doran P, Bailey J (1986a) Effects of hydroxyurea on immobilized and suspended yeast fermentation rates and cell cycle operation. Biotechnol Bioeng 28:1814–1831Google Scholar
  7. Doran P, Bailey J (1986b) Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng 28:73–87Google Scholar
  8. Fouchet P, Jayat C, Hechard Y, Ratinaud MH, Frelat G (1993) Recent advances of flow cytometry in fundamental and applied microbiology. Biol Cell 78:95–109Google Scholar
  9. Frelat G, Laplace-Builhe C, Grunwald D (1989) Microbiol analysis by flow cytometry: present and future. In: Yen A (ed) Flow cytometry. Advanced research and clinical applications. CRC Press, Boca Raton, Fla., pp 255–279Google Scholar
  10. Georgiou G, Telford J, Shuler M, Wilson D (1986) Localization of inclusion bodies in Escherichia coli overproducing β-lactamase or alkaline phosphatase. Appl Environ Microbiol 52:1157–1161Google Scholar
  11. Ingraham J, Maaloe O, Neidhart F (1983) Growth of the bacterial cell. Sinauer Associates, Sunderland, MassGoogle Scholar
  12. Kell D, Ryder H, Kaprelyants A, Westerhoff H (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie van Leeuwenhoek 60:145–158Google Scholar
  13. Koizumi JI, Aiba S (1989) Oscillatory behavior of population density in continuous culture of genetic-engineered Bacillus stearothermophilus. Biotechnol Bioeng 34:750–754Google Scholar
  14. Kramer J, Singleton F (1992) Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl Environ Microbiol 58:201–207Google Scholar
  15. Kumar P, Schügerl K (1990) Immobilization of genetically engineered cells: a new strategy for higher stability. J Biotechnol 14:255–272Google Scholar
  16. Locher G, Sonnleitner B, Fiechter A (1992) On-line measurement in biotechnology: techniques. J Biotechnol 25:23–53CrossRefPubMedGoogle Scholar
  17. Maaloe O (1979) Regulation of the protein synthesizing machinery-ribosomes, tRNA, factors and so on. In: Goldberger RF (ed) Biological regulation and development. Plenum Press, New York, pp 487–542Google Scholar
  18. Manin C, Barbotin J, Thomas D, Lazzaroni J, Portalier R (1989) Production of alkaline phosphatase by immobilized growing cells of Escherichia coli excretory mutants. Appl Microbiol Biotechnol 32:143–147Google Scholar
  19. Primrose S, Derbyshire P, Jones I, Robinson A, Ellwood D (1984) The application of continuous culture to the study of plasmid stability. Biotech Med Environ 14:213–328Google Scholar
  20. Scheper T, Hitzmann B, Rinas U, Schügerl K (1987) Flow cytometry of Escherichia coli for process monitoring. J Biotechnol 5:139–148Google Scholar
  21. Schoner R, Ellis L, Schoner B (1985) Isolation and purification of protein granules from Escherichia coli cells overproducing bovine growth hormone. Bio/Technology 3:151–154Google Scholar
  22. Srienc F, Arnold B, Bailey J (1984) Characterization of intracellular accumulation of polyhydroxybutyrate in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol Bioeng 26:982Google Scholar
  23. Stephens ML, Lyberatos G (1988) Effect of cycling on the stability of plasmid-bearing microorganisms in continuous culture. Biotechnol Bioeng 31:464–469Google Scholar
  24. Wanner U, Egli T (1990) Dynamics of microbial growth and cell composition in batch culture. FEMS Microbiol Rev 75:19–44Google Scholar
  25. Wittrup K, Mann M, Fenton D, Tsai L, Bailey J (1988) Single-cell light scatter as a probe of refractile body formation in recombinant Escherichia coli. Bio/technology 6:423–426Google Scholar
  26. Wood T, Peretti S (1990) Depression of protein synthetic capacity due to cloned-gene expression in Escherichia coli. Biotechnol Bioeng 36:865–878Google Scholar
  27. Zabriskie D, Arcui E (1986) Factors influencing productivity of fermentations using recombinant microorganisms. Enzyme Microb Technol 8:706–717Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • P. Fouchet
    • 1
  • C. Manin
    • 2
  • H. Richard
    • 3
  • G. Frelat
    • 1
  • J. N. Barbotin
    • 2
  1. 1.Laboratoire de Cytométrie, Département de Pathologie et Toxicologie Expérimentales, Direction des Sciences du Vivant, Commissariat à l'Energie AtomiqueCentre d'Etudes Nucléaires de Fontenay aux RosesFontenay aux Roses CedexFrance
  2. 2.Laboratoire de Technologie Enzymatique (U.R.A. CNRS 1442)Université de Technologie de CompiègneCompiègne CedexFrance
  3. 3.Laboratoire de Cancérologie Expérimentale, Département de Pathologie et Toxicologie Expérimentales, Direction des Sciences du Vivant, Commissariat à l'Energie AtomiqueCentre d'Etudes Nucléaires de Fontenay aux RosesFontenay aux Roses CedexFrance

Personalised recommendations