Journal of Mathematical Biology

, Volume 28, Issue 4, pp 365–382 | Cite as

On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations

  • O. Diekmann
  • J. A. P. Heesterbeek
  • J. A. J. Metz
Article

Abstract

The expected number of secondary cases produced by a typical infected individual during its entire period of infectiousness in a completely susceptible population is mathematically defined as the dominant eigenvalue of a positive linear operator. It is shown that in certain special cases one can easily compute or estimate this eigenvalue. Several examples involving various structuring variables like age, sexual disposition and activity are presented.

Key words

Epidemic models Heterogeneous populations Basic reproductive number Invasion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreasen, V., Christiansen, F. B.: Persistence of an infectious disease in a subdivided population. Math. Biosci. 96, 239–253 (1989)Google Scholar
  2. 2.
    Bailey, N. T. J.: The biomathematics of malaria. London: Griffin 1982Google Scholar
  3. 3.
    Barbour, A. D.: MacDonald's model and the transmission of bilharzia. Trans. Roy. Soc. Trop. Med. Hyg. 72, 6–15 (1978)Google Scholar
  4. 4.
    Blythe, S. P., Castillo-Chavez, C.: Like-with-like preference and sexual mixing models. Math. Biosci. 96, 221–238 (1989)Google Scholar
  5. 5.
    Dietz, K.: Models for vector-borne parasitic diseases. In: Barigozzi, C. (ed.) Vito Volterra Symposium on Mathematical Models in Biology. (Lect. Notes Biomath., vol. 39, pp. 264–277) Berlin Heidelberg New York: Springer 1980Google Scholar
  6. 6.
    Dietz, K., Schenzle, D.: Proportionate mixing models for age-dependent infection transmission. J. Math. Biol. 22, 117–120 (1985)Google Scholar
  7. 7.
    Heijmans, H. J. A. M.: The dynamical behaviour of the age-size distribution of a cell population. In: Metz, J. A. J., Diekmann, O. (eds.) The dynamics of physiologically structured populations. (Lect. Notes Biomath., vol. 68, pp. 185–202) Berlin Heidelberg New York: Springer 1986Google Scholar
  8. 8.
    Hethcote, H. W., Yorke, J. A.: Gonorrhea, transmission dynamics and control. (Lect. Notes Biomath., vol. 56) Berlin Heidelberg New York: Springer 1984Google Scholar
  9. 9.
    Hethcote, H. W., van Ark, J. W.: Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math. Biosci. 84, 85–118 (1987)Google Scholar
  10. 10.
    Hyman, J. M., Stanley, E. A.: Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90, 415–473 (1988)Google Scholar
  11. 11.
    Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling and analyzing HIV transmission: the effect of contact patterns. Math. Biosci. 92, 119–199 (1988)Google Scholar
  12. 12.
    Jagers, P., Nerman O.: The growth and composition of branching populations. Adv. Appl. Probab. 16, 221–259 (1984)Google Scholar
  13. 13.
    May, R. M., Anderson, R. M.: The transmission dynamics of human immunodeficiency virus (HIV). Philo. Trans. R. Soc. Lond., B 321, 565–607 (1988)Google Scholar
  14. 14.
    Mode, C. J.: Multitype branching processes, theory and applications. New York: Elsevier 1971Google Scholar
  15. 15.
    Nold, A.: Heterogeneity in disease-transmission modeling. Math. Biosci. 52, 227–240 (1980)Google Scholar
  16. 16.
    Schaefer, H. H.: Some spectral properties of positive linear operators. Pacific J. Math. 10, 1009–1019 (1960)Google Scholar
  17. 17.
    Schaefer, H. H.: Banach lattices and positive operators. Berlin Heidelberg New York: Springer 1974Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • O. Diekmann
    • 1
    • 2
  • J. A. P. Heesterbeek
    • 1
  • J. A. J. Metz
    • 2
    • 1
  1. 1.Centre for Mathematics and Computer ScienceAB AmsterdamThe Netherlands
  2. 2.Institute of Theoretical BiologyLeiden UniversityGP LeidenThe Netherlands

Personalised recommendations