Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 2, pp 185–204 | Cite as

Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins

  • Stephan Grzesiek
  • Ad Bax
Research Papers

Summary

Experiments and procedures are described that greatly alleviate the sequential assignment process of uniformly 13C/15N-enriched proteins by determining the type of amino acid from experiments that correlate side chain with backbone amide resonances. A recently proposed 3D NMR experiment, CBCA(CO)NH, correlates Cα and Cβ resonances to the backbone amide 1H and 15N resonances of the next residue (Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc., 114, 6291–6293). An extension of this experiment is described which correlates the proton Hβ and Hα resonances to the amide 1H and 15N resonances of the next amino acid, and a detailed product operator description is given. A simple 2D-edited constant-time HSQC experiment is described which rapidly identifies Hβ and Cβ resonances of aromatic or Asn/Asp residues. The extent to which combined knowledge of the Cα and Cβ chemical shift values determines the amino acid type is investigated, and it is demonstrated that the combined Cα and Cβ chemical shifts of three or four adjacent residues usually are sufficient for defining a unique position in the protein sequence.

Keywords

13C chemical shifts Constant-time Triple resonance Sequential assignment 3D NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax, A, Clore, G.M., Driscoll, P.C., Gronenborn, A.M., Ikura, M., and Kay, L.E. (1990a), J. Magn. Reson., 87, 620–627.Google Scholar
  2. Bax, A, Clore, G.M. and Gronenborn, A.M. (1990b) J. Magn. Reson., 88, 425–431.Google Scholar
  3. Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., in press.Google Scholar
  4. Boucher, W., Laue, E.D., Campbell-Burk, S. and Domaille, P.J. (1992) J. Am. Chem. Soc., 114, 2262–2264.Google Scholar
  5. Burum, D.P. and Ernst, R.R. (1980) J. Magn. Reson., 39, 163–168.Google Scholar
  6. Clore, G.M., Bax, A., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 8172–8184.Google Scholar
  7. Clubb, R.T., Thanabal, V. and Wagner, G. (1992) J. Magn. Reson., 97, 213–217.Google Scholar
  8. Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Magnetic Resonance in One and Two Dimensions, Claredon Press, Oxford pp. 25–29.Google Scholar
  9. Fesik, S.W., Eaton, H.L., Olejniczak, E.T., Zuiderweg, E.R.P., McIntosh, L.P. and Dahlquist, F.W. (1990) J. Am. Chem. Soc., 112, 886–888.Google Scholar
  10. Grzesiek, S. and Bax, A. (1992a) J. Magn. Reson., 96, 432–440.Google Scholar
  11. Grzesiek, S. and Bax, A. (1992b) J. Magn. Reson., 99, 201–207.Google Scholar
  12. Grzesiek, S. and Bax, A. (1992c) J. Am. Chem. Soc., 114, 6291–6293.Google Scholar
  13. Grzesiek, S., Döbeli, H., Gentz, R., Garotta, G., Labhardt, A.M. and Bax, A. (1992) Biochemistry, 31, 8180–8190.Google Scholar
  14. Hansen, P.E. (1991) Biochemistry, 30, 10457–10466.Google Scholar
  15. Howarth, O.W. and Lilley, D.M.J. (1978) Proc. NMR Spectrosc., 12, 1–40.Google Scholar
  16. Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.Google Scholar
  17. Ikura, M., Kay, L.E., Krinks, M. and Bax, A. (1991) Biochemistry, 30, 5498–5504.Google Scholar
  18. Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., Klee, C.B. and Bax, A. (1992) Science 256, 632–638.Google Scholar
  19. Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990a) J. Magn. Reson. 89, 496–514.Google Scholar
  20. Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990b) Science, 249, 411–414.Google Scholar
  21. Kay, L.E., Ikura, M. and Bax, A. (1990c) J. Am. Chem. Soc., 112, 888–889.Google Scholar
  22. Kay, L.E., Wittekind, M., McCoy, M.A., Friedrichs, M.S. and Mueller, L. (1992) J. Magn. Reson., 98, 443–450.Google Scholar
  23. Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989a) Biochemistry, 28, 6150–6156.Google Scholar
  24. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989b) J. Am. Chem. Soc., 111, 1515–1517.Google Scholar
  25. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989c) J. Mag. Res., 85, 393–399.Google Scholar
  26. McCoy, M.A. and Mueller, L. (1992) J. Magn. Reson., 99, 18–36.Google Scholar
  27. Meador, W.E., Means, A.R. and Quiocho, F.A. (1992) Science, 257, 1251–1255.Google Scholar
  28. Oh, B.H., Westler, W.M., Darba, P. and Markley, J.L. (1988) Science, 240, 908–911.Google Scholar
  29. Palmer III, A.G., Fairbrother, W.J., Cavanagh, J., Wright, P.E. and Rance, M. (1992) J. Biomol. NMR, 2, 103–108.Google Scholar
  30. Pelton, J.G., Torchia, D.A., Meadow, N.D., Wong, C.-Y. and Roseman, S. (1991) Biochemistry, 30, 10043–10057.Google Scholar
  31. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991) J. Magn. Reson. 94, 209–213.Google Scholar
  32. Santoro, J. and King, G.C. (1992) J. Magn. Reson. 97, 202–207.Google Scholar
  33. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  34. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.Google Scholar
  35. van de Ven, F.J.M. and Philippens, M.E.P. (1992)J. Magn. Reson., 97, 637–644.Google Scholar
  36. Vuister, G.W. and Bax, A. (1992) J. Magn. Reson., 98, 428–435.Google Scholar
  37. Wagner, G. and Brühweiler, D. (1986), Biochemistry, 25, 5839–5843.Google Scholar
  38. Wagner, G., Schneider, P. and Thanabal, V. (1991) J. Magn. Reson. 93, 436–440.Google Scholar
  39. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol. 222, 311–333.Google Scholar
  40. Wittekind, M., Görlach, M., Friedrichs, M., Dreyfuss, G. and Mueller, L. (1992) Biochemistry, 31, 6254–6265.Google Scholar
  41. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  42. Zhu, G. and Bax, A. (1990) J. Magn. Reson., 90, 405–410.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1993

Authors and Affiliations

  • Stephan Grzesiek
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations