Journal of Biomolecular NMR

, Volume 3, Issue 2, pp 151–164 | Cite as

Protein dynamics studied by rotating frame 15N spin relaxation times

  • T. Szyperski
  • P. Luginbühl
  • G. Otting
  • P. Güntert
  • K. Wüthrich
Research Papers

Summary

Conformational rate processes in aqueous solutions of uniformly 15N-labeled pancreatic trypsin inhibitor (BPTI) at 36°C were investigated by measuring the rotating frame relaxation times of the backbone 15N spins as a function of the spin-lock power. Two different intramolecular exchange processes were identified. A first local rate process involved the residues Cys38 and Arg39, had a correlation time of about 1.3 ms, and was related to isomerization of the chirality of the disulfide bond Cys14-Cys38. A second, faster motional mode was superimposed on the disulfide bond isomerization and was tentatively attributed to local segmental motions in the polypeptide sequence-Cys14-Ala15-Lys16-. The correlation time for the overall rotational tumbling of the protein was found to be 2 ns, using the assumption that relaxation is dominated by dipolar coupling and chemical shift anistropy modulated by isotropic molecular reorientation.

Keywords

Protein dynamics Basic pancreatic trypsin inhibitor Nuclear magnetic resonance spectroscopy Rotating frame spin relaxation times 

Abbreviations

BPTI

basic pancreatic trypsin inhibitor

2D

two-dimensional

COSY

2D correlation spectroscopy

TOCSY

2D total correlation spectroscopy

RF

radio frequency

CW

continuous wave

TPPI

time-proportional phase incrementation

CSA

chemical shift anisotropy

T1

longitudinal relaxation time

T2

transverse relaxation time

T

relaxation time in the rotating frame τ, correlation time for overall rotational reorientation of the protein

τexs, τexf,

correlation times for two conformational exchange processes (slow and fast).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allerhand, A., Doddrell, D. and Komoroski, R. (1971) J. Chem. Phys., 55, 189–198.Google Scholar
  2. Abragam, A. (1961) The Principles of Nuclear Magnetic Relaxation. Clarendon Press, Oxford.Google Scholar
  3. Berndt, K.D., Güntert, P., Orbons, L.P.M. and Wüthrich, K. (1992) J. Mol. Biol. 227, 757–775.Google Scholar
  4. Blicharski, J.S. (1972) Acta Phys. Pol. A, 41, 223–236.Google Scholar
  5. Boyd, J., Hommel, U. and Campbell, I.D. (1990) Chem. Phys. Lett., 175, 477–482.Google Scholar
  6. Brüschweiler, R.P. (1992) Ph.D. thesis No. 9466, ETH Zürich.Google Scholar
  7. Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990) Biochemistry, 29, 7387–7401.Google Scholar
  8. DeMarco, A. and Wüthrich, K. (1976) J. Magn. Reson., 24, 201–204.Google Scholar
  9. Deisenhofer, J. and Steigemann, W. (1975) Acta Cryst., B31, 238–250.Google Scholar
  10. Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553–559.Google Scholar
  11. Eccles, C., Güntert, P., Billeter, M. and Wüthrich, K. (1991) J. Biomol. NMR, 1, 111–130.Google Scholar
  12. Goldman, M. (1984) J. Magn. Reson., 60, 437–452.Google Scholar
  13. Glushka, J., Lee, M., Coffin, S. and Cowburn, D. (1989) J. Am. Chem. Soc., 111, 7716–7722.Google Scholar
  14. Gutowsky, H.S. and Saika, A. (1953) J. Chem. Phys. 21, 1688–1694.Google Scholar
  15. Hiyama, Y., Niu, C., Silverton, J.V., Bavoso, A. and Torchia, D.A. (1988) J. Am. Chem. Soc., 110, 2378–2383.Google Scholar
  16. Jones, G.P. (1966) Phys. Rev., 148, 332–335.Google Scholar
  17. Kaplan, J.I. and Fraenkel, G. (1980) NMR of chemically exchanging systems. Academic Press, New York.Google Scholar
  18. Kay, L.E., Jue, T., Bangerter, B. and Demou, P.C. (1987) J. Magn. Reson., 73, 558–564.Google Scholar
  19. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  20. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.Google Scholar
  21. Keiter, E.A. (1986) Ph.D. Thesis, University of Illinois.Google Scholar
  22. Kördel, J., Skelton, N.J., Akke, M., Palmer III, A.G. and Chazin, W.J. (1992) Biochemistry, 31, 4856–4866.Google Scholar
  23. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559 and 4560–4570.Google Scholar
  24. Marion, D. and Wüthrich, K. (1983) Biochem Biophys. Res. Comm., 113, 967–974.Google Scholar
  25. Maudsley, A.A., Müller, L. and Ernst, R.R. (1977) J. Magn. Reson., 28, 463–469.Google Scholar
  26. Messerle, B.A., Wider, G., Otting, G., Weber, C. and Wüthrich, K. (1989) J. Magn. Reson., 85, 608–613.Google Scholar
  27. Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.Google Scholar
  28. Nirmala, N.R. and Wagner, G. (1989) J. Magn. Reson., 82, 659–660.Google Scholar
  29. Oppenheim, I., Shuler, K.E. and Weiss, G.H. (1977) Stochastic Processes in Chemical Physics: The Master Equation, MIT Press, Cambridge.Google Scholar
  30. Otting, G. and Wüthrich, K. (1988) J. Magn. Reson. 76, 569–574.Google Scholar
  31. Palmer III, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. and Rance, M. (1992) Mol. Phys., 75, 699–711.Google Scholar
  32. Peng, J.W., Thanabal, V. and Wagner, G. (1991a) J. Magn. Reson., 94, 82–100.Google Scholar
  33. Peng, J.W., Thanabal, V. and Wagner, G. (1991b) J. Magn. Reson., 95, 421–427.Google Scholar
  34. Peng, J.W. and Wagner, G. (1992) J. Magn. Reson., 98, 308–332.Google Scholar
  35. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986) Numerical Recipes, Cambridge University Press, Cambridge.Google Scholar
  36. Richarz, R., Nagayama, K. and Wüthrich, K. (1980) Biochemistry, 19, 5189–5196.Google Scholar
  37. Sandström, J. (1982) Dynamic NMR spectroscopy. Academic Press, New York.Google Scholar
  38. Schneider, D.M., Dellwo, M.J. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.Google Scholar
  39. Sklenar, V., Torchia, D. and Bax, A. (1987) J. Magn. Reson., 73, 375–379.Google Scholar
  40. Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.Google Scholar
  41. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  42. Stilbs, P. and Moseley, M.M. (1978) J. Magn. Reson., 31, 55–61.Google Scholar
  43. Stone, M.J., Fairbrother, W.J., Palmer III, A.G., Reizer, J., Saier, M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.Google Scholar
  44. Wagner, G. and Wüthrich, K. (1982) J. Mol. Biol., 155, 347–366.Google Scholar
  45. Wagner, G. and Nirmala, N.R. (1989) Chemical Scripta, 29A, 27–30.Google Scholar
  46. Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Gō, N. and Wüthrich, K. (1987) J. Mol. Biol., 196, 611–639.Google Scholar
  47. Wider, G., Neri, D. and Wüthrich, K. (1991) J. Biomol. NMR, 1, 93–98.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1993

Authors and Affiliations

  • T. Szyperski
    • 1
  • P. Luginbühl
    • 1
  • G. Otting
    • 1
  • P. Güntert
    • 1
  • K. Wüthrich
    • 1
  1. 1.Institut für Molekularbiologie und BiophysikEidgenössische Technische Hochschule-HönggerbergZürichSwitzerland

Personalised recommendations