Journal of Biomolecular NMR

, Volume 3, Issue 2, pp 133–149 | Cite as

1H and 15N resonance assignments and solution secondary structure of oxidized Desulfovibrio vulgaris flavodoxin determined by heteronuclear three-dimensional NMR spectroscopy

  • Brian J. Stockman
  • Annica Euvrard
  • David A. Kloosterman
  • Terrence A. Scahill
  • Richard P. Swenson
Research Papers

Summary

Sequence-specific 1H and 15N resonance assignments have been made for all 145 non-prolyl residues and for the flavin cofactor in oxidized Desulfovibrio vulgaris flavodoxin. Assignments were obtained by recording and analyzing 1H−15N heteronuclear three-dimensional NMR experiments on uniformly 15N-enriched protein, pH 6.5, at 300 K. Many of the side-chain resonances have also been assigned. Observed medium-and long-range NOEs, in combination with 3JNHα coupling constants and 1HN exchange data, indicate that the secondary structure consists of a five-stranded parallel β-sheet and four α-helices, with a topology identical to that determined previously by X-ray crystallographic methods. One helix, which is distorted in the X-ray structure, is non-regular in solution as well. Several protein-flavin NOEs, which serve to dock the flavin ligand to its binding site, have also been identified. Based on fast-exchange into 2H2O, the 1HN3 proton of the isoalloxazine ring is solvent accessible and not strongly hydrogen-bonded in the flavin binding site, in contrast to what has been observed in several other flavodoxins. The resonance assignments presented here can form the basis for assigning single-site mutant flavodoxins and for correlating structural differences between wild-type and mutant flavodoxins with altered redox potentials.

Keywords

Structural biology Isotopic enrichment Protein-ligand interactions Cofactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anil, Kumar, Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun. 95, 1–6.Google Scholar
  2. Bodenhausen, G. and Ruben, D.L. (1980) Chem. Phys. Lett., 69, 185–188.Google Scholar
  3. Burnett, R.M., Darling, G.D., Kendall, D.S., LeQuesne, M.E., Mayhew, S.G., Smith, W.W. and Ludwig, M.L. (1974) J. Biol. Chem., 249, 4383–4392.Google Scholar
  4. Clubb, R.T., Thanabal, V., Osborne, C. and Wagner, G. (1991) Biochemistry, 30, 7718–7730.Google Scholar
  5. Dubourdieu, M., Le Gall, J. and Favaudon, V. (1975) Biochim. Biophys. Acta, 376, 519–532.Google Scholar
  6. Frenkiel, T., Bauer, C., Carr, M.D., Birdsall, B. and Feeney, J. (1990) J. Magn. Reson., 90, 420–425.Google Scholar
  7. Fukuyama, K., Matsubara, H. and Rogers, L.J. (1992) J. Mol. Biol., 225, 775–789.Google Scholar
  8. Kay, L.E. and Bax, A. (1990) J. Magn. Reson., 86, 110–126.Google Scholar
  9. Krey, G.D., Vanin, E.F. and Swenson, R.P. (1988) J. Biol. Chem., 263, 15436–15443.Google Scholar
  10. Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.Google Scholar
  11. Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989) Biochemistry, 28, 6150–6156.Google Scholar
  12. Mayhew, S.G. and Ludwig, M.L. (1975) Enzymes, 12, 57–118.Google Scholar
  13. Paulsen, K.E., Stankovich, M.T., Stockman, B.J. and Markley, J.L. (1990) Arch. Biochem. Biophys., 280, 68–73.Google Scholar
  14. Piantini, U., Sørensen, O.W. and Ernst, R.R. (1982) J. Am. Chem. Soc., 104, 6800–6801.Google Scholar
  15. Shaka, A.J., Barker, P.B. and Freeman, R. (1985) J. Magn. Reson. 64, 547–552.Google Scholar
  16. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  17. Simondson, R.P. and Tollin, G. (1980) Mol. Cell. Biochem. 33, 13–24.Google Scholar
  18. Smith, W.W., Burnett, R.M., Darling, G.D. and Ludwig, M.L. (1977) J. Mol. Biol., 117, 195–225.Google Scholar
  19. Smith, W.W., Pattridge, K.A., Ludwig, M.L., Petsko, G.A., Tsernoglou, D., Tanaka, M. and Yasunobu, K.T. (1983) J. Mol. Biol., 165, 737–755.Google Scholar
  20. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  21. Stockman, B.J., Krezel, A.M., Markley, J.L., Leonhardt, K.G. and Straus, N.A. (1990) Biochemistry, 29, 9600–9609.Google Scholar
  22. Swenson, R.P., Krey, G.D. and Eren, M. (1991) In Flavins and Flavoproteins Eds. Curti, B., Ronchi, S. and Zanetti, G. Walter de Gruyter, New York, pp. 415–422.Google Scholar
  23. van Mierlo, C.P.M., Lijnzaad, P., Vervoort, J., Muller, F., Berendsen, H.J.C. and de Vlieg, J. (1990a) Eur. J. Biochem., 194, 185–198.Google Scholar
  24. van Mierlo, C.P.M., van der Sanden, B.P.J., van Woensel, P., Muller, F. and Vervoort, J. (1990b) Eur. J. Biochem. 194, 199–216.Google Scholar
  25. van Mierlo, C.P.M., Vervoort, J., Muller, F. and Bacher, A. (1990c) Eur. J. Biochem., 187, 521–541.Google Scholar
  26. Vervoort, J., Müller, F., Mayhew, S.G., van den Berg, W.A.M., Moonen, C.T.W. and Bacher, A. (1986) Biochemistry, 25, 6789–6799.Google Scholar
  27. Watenpaugh, K.D., Sieker, L.C. and Jensen, J.M. (1973) Proc. Natl. Acad. Sci. USA, 70, 3857–3860.Google Scholar
  28. Watt, W., Tulinsky, A., Swenson, R.P. and Watenpaugh, K.D. (1991) J. Mol. Biol., 218, 195–208.Google Scholar
  29. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311–333.Google Scholar
  30. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  31. Zuiderweg, E.R.P. and Fesik, S.W. (1989) Biochemistry, 28, 2387–2391.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1993

Authors and Affiliations

  • Brian J. Stockman
    • 1
  • Annica Euvrard
    • 1
  • David A. Kloosterman
    • 1
  • Terrence A. Scahill
    • 1
  • Richard P. Swenson
    • 2
  1. 1.Upjohn LaboratoriesThe Upjohn CompanyKalamazooUSA
  2. 2.Department of BiochemistryOhio State UniversityColumbusUSA

Personalised recommendations