Journal of Molecular Evolution

, Volume 39, Issue 1, pp 62–70 | Cite as

High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants

  • D. L. Nickrent
  • E. M. Starr
Article

Abstract

Relative rate tests, using Gnetum as a reference taxon, were conducted on nuclear 18S rRNA sequences from 10 angiosperms including autotrophic nonparasites (Arabidopsis, Asarum, Glycine, Malpighia, and Zea), a chlorophyllous hemiparasite (Arceuthobium—Viscaceae), and achlorophyllous holoparasites (Balanophora—Balanophoraceae, Prosopanche—Hydnoraceae, and Rafflesia and Rhizanthes—Rafflesiaceae). Compared with Glycine, the mean number of substitutions per site (K) for five autotrophic angiosperms is 0.036 whereas for the holoparasites K = 0.126, i.e., 3.5 times higher. Comparisons of autotrophic species with short and long generation times showed no differences in K; hence, divergent rRNA sequences in the holoparasites are likely attributable to other mechanisms. These might include genetic bottlenecks, effective population size, and/or molecular drive. High substitution rates appear to be associated only with those parasitic angiosperms that have developed a highly modified haustorial system and extreme nutritional dependence upon the host. At present, high substitution rates in these parasites confound attempts to determine their phylogenetic position relative to other angiosperms.

Key words

Holoparasite Balanophoraceae Hydnoraceae Rafflesiaceae Viscaceae Ribosomal RNA Relative rates Plant molecular evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495Google Scholar
  2. Arnheim ND Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327Google Scholar
  3. Bosquet J, Strauss SH, Doerksen AH, Price RA (1992) Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89:7844–7848Google Scholar
  4. Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: The evolution of tandem genes. J Mol Biol 63:57–73Google Scholar
  5. Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comp Appl Biosci 5:233–234Google Scholar
  6. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580Google Scholar
  7. Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard 72:716–793Google Scholar
  8. Cronquist A (1988) The evolution and classification of flowering plants, 2nd ed. The New York Botanical Garden, Bronx, NYGoogle Scholar
  9. Cullings KW, Bruns TD (1992) Phylogenetic origin of the Monotropoideae inferred from partial 28S ribosomal RNA gene sequences. Can J Bot 70:1703–1708Google Scholar
  10. Cullis CA (1984) Quantitative variation of the ribosomal RNA genes. In: Jordan EG, Cullis CA (eds) The nucleolus. Cambridge University Press, Cambridge, pp 103–112Google Scholar
  11. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339Google Scholar
  12. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117PubMedGoogle Scholar
  13. Dover GA (1987) DNA turnover and the molecular clock. J Mol Evol 26:47–58Google Scholar
  14. Dover G, Coen E (1981) Springcleaning ribosomal DNA: a model for multgene evolution? Nature 290:731–732Google Scholar
  15. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  16. Eckenrode VK, Arnold J, Meagher RB (1985) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J Mol Evol 21:259–269Google Scholar
  17. Felsenstein J (1978) Cases in which parsimony or compatibility will be positively misleading. Syst Zool 27:410–410Google Scholar
  18. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284PubMedGoogle Scholar
  19. Gaut BS, Muse SV, Clark WD, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35:292–303Google Scholar
  20. Gedalovich-Shedletzky E, Kuijt J (1990) An ultrastructural study of the tuber stands of Balanophora (Balanophoraceae). Can J Bot 68: 1271–1279Google Scholar
  21. Gutell RR (1993) Collection of small subunit (168- and 16S-like) ribosomal RNA structures. Nucleic Acids Res 21:3051–3054PubMedGoogle Scholar
  22. Hamby KR, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 50–91Google Scholar
  23. Ismail G (1988) Conservation of the giant Rafflesia in Sabah, Malaysia. TREE 3:316–317Google Scholar
  24. Kimura M (1987) Molecular evolutionary clock and the neutral theory. J Mol Evol 26:24–33Google Scholar
  25. Klekowski EJ (1988) Mechanisms that maintain the genetic integrity of plants. In: Greuter W, Zimmer B (eds) Proceedings of the XIV International Botanical Congress. Koeltz, Königstein/Taunus, pp 137–152Google Scholar
  26. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley, p 246Google Scholar
  27. Kunkel TA, Loeb LA (1982) Fidelity of mammalian DNA polymerases. Science 213:765–767Google Scholar
  28. Lake JA (1987) Determining evolutionary distances from highly diverged nucleic acid sequences: operator metrics. J Mol Evol 26: 59–73Google Scholar
  29. Meijer W (1958) A contribution to the taxonomy and biology of Rafflesia arnoldi in West Sumatra. Ann Bogorienses 3:33–44Google Scholar
  30. Messing J, Carlson J, Hagen G, Rubenstein I, Oleson A (1984) Cloning and sequencing of the ribosomal RNA genes in maize: the 17S region. DNA 3:31–40Google Scholar
  31. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–350Google Scholar
  32. Neefs J-M, Van de Peer Y, De Rijk P, Chapelle S, De Wachter R (1993) Compilation of small subunit RNA structures. Nucleic Acids Res 21:3025–3049PubMedGoogle Scholar
  33. Nickrent DL, Sargent ML (1991) An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA. Nucleic Acids Res 19:227–235Google Scholar
  34. Nickrent DL, Franchina CR (1990) Phylogenetic relationships of the] Santalales and relatives. J Mol Evol 31:294–301Google Scholar
  35. Nickrent DL (1994) From field to film: rapid sequencing methods for field-collected plant species. Biotechniques 16:470–475Google Scholar
  36. Price PW (1980) Evolutionary biology of parasites. Monographs in Population Biology No. 15. Princeton University Press, Princeton, p 237Google Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  38. Sarich VM, Wilson AC (1967) Rates of albumin evolution in primates. Proc Natl Acad Sci USA 58:142–148Google Scholar
  39. Sogin ML, Elwood HH, Gunderson HH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387Google Scholar
  40. Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46:225–359Google Scholar
  41. Takhtajan AL (1987) Systema Magnoliophytorum. Nauka, Leningrad (in Russian)Google Scholar
  42. Thorne RF (1992) An updated classification of the flowering plants. Aliso 13:365–389Google Scholar
  43. Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289Google Scholar
  44. Unfried I, Stocker U, Gruendler P (1989) Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana Co10. Nucleic Acids Res 17:7513Google Scholar
  45. Van de Peer Y, Neefs J-M, De Rijk P, De Wachter R (1993) Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J Mol Evol 37:221–232Google Scholar
  46. Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196Google Scholar
  47. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639Google Scholar
  48. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  49. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058Google Scholar
  50. Wolfe KH, Katz-Downie DS, Morden CW, Palmer JD (1992) Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated evolution, altered promoter structure, and tRNA pseudogenes. Plant Mol Biol 18:1037–1048Google Scholar
  51. Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989a) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205Google Scholar
  52. Wolfe KH, Sharp PM, Li W-H (1989b) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29:208–211Google Scholar
  53. Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • D. L. Nickrent
    • 1
  • E. M. Starr
    • 1
  1. 1.Department of Plant BiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations