Space Science Reviews

, Volume 38, Issue 3–4, pp 203–242 | Cite as

Measurements of solar total irradiance and its variability

  • Richard C. Willson


The development of electrically self calibrated cavity pyrheliometric instrumentation that occurred in the early 20th century provided the technological base for experiments to detect variability of the solar total irradiance. Experiments from ground based observatories, aircraft and balloons during the 1st half of the 20th century were unable to achieve sufficient accuracy or long term precision to unambiguously detect irradiance variations of solar origin. Refinements in pyrheliometric technology during the 1960's and 1970's and the accessibility of extended experimental opportunities above the Earth's atmosphere in recent years have provided the first direct observations of solar total irradiance variability and provided the cornerstone observations of a long term database on solar irradiance. A program of solar irradiance monitoring has evolved to sustain the database over at least 22 years, corresponding to a single cycle of solar magnetic activity, and the shortest well identified cycle of climate variation. Direct links between total irradiance variations, solar magnetic activity and the solar global ‘5 min’ oscillation phenomena have been derived from recent space flight observations by the SMM/ACRIM I experiment.


Solar Irradiance Early 20th Century Space Flight Technological Base Solar Total Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, C. G. and Fowle, F. E.: 1908, Annals of the Astrophysical Observatory of the Smithsonian institution, Vol. II.Google Scholar
  2. Abbot, C. G., Fowle, F. E., and Aldrich, L. B.: 1922, in Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. IV, p. 15.Google Scholar
  3. Bruning, D. H. and Labonte, B. J.: 1982, Bull. Am. Astron. Soc. 13, 858.Google Scholar
  4. Brusa, R. W. and Fröhlich, C.: 1972, ‘Entwicklung eines neuen absolutradiometers’, Technical Note 1, World Radiation Center, Davos, Switzerland.Google Scholar
  5. Brusa, R. W.: 1983, ‘Solar Radiometry’, Thesis, Pub. No. 598, PMOD World Radiation Center, Davos, Switzerland.Google Scholar
  6. Brusa, R. and Fröhlich, C.: 1975, Scientific Discussions IPC IV, World Radiation Center, Davos, Switzerland.Google Scholar
  7. Brusa, R. and Fröhlich, C.: 1981 Solar Variation and Its Variation in Time, Proc. of IAMAP 3rd Scientific Assembly, Hamburg, F.R.G.Google Scholar
  8. Chapman, G. A.: 1980, Astrophys. J. Letters 242, 45.Google Scholar
  9. Chapman, G. A.: 1983, ‘On the Energy Balance of Solar Active Regions’, accepted by Nature.Google Scholar
  10. Chapman, G. A. and Klabunde, D. P.: 1982, Astrophys. J. 261, 387.Google Scholar
  11. Claverie, A., Isaak, G. R., McLeod, C. P., Van der Raay, H. B., and Cortes, T. R.: 1981a, Solar Phys. 74, 51.Google Scholar
  12. Claverie, A., Isaak, G. R., and McLeod, C. P.: 1981b, Solar Phys. 74, 73.Google Scholar
  13. Crommelynck, D.: 1973, ‘Instrumentation Theory of Absolute Radiometry’, Publication Series A, No. 81, Royal Meteorological Institute of Belgium, Brussels, Belgium.Google Scholar
  14. Crommelynck, D. A.: 1981a, Solar Phys. 74, 509.Google Scholar
  15. Crommelynck, D. A.: 1981b, Fundamentals of Absolute Pyrheliometry and Objective Characterization, Notes Techniques No. 46, Royal Meteorological Institute of Belgium.Google Scholar
  16. Drummond, A. J., Hickey, J. R., Scholes, W. J., and Laue, E. G.: 1967, J. Spacecraft Rockets 4, 1200.Google Scholar
  17. Duncan, C. H.: 1981, in S. Sofia (ed.), A Summary of Results from Solar Monitoring Rocket Flights, NASA Conference Publ. No. 2191, S. Sofia, NASA Goddard Spaceflight Center, Greenbelt, M., November, 1980, p. 45.Google Scholar
  18. Duncan, C. H., Harrison, R. G., Hickey, J. R., Kendall, J. M., Sr., Thekaekara, M. P., Willson, R. C.: 1977, Appl. Opt. 16, 2690.Google Scholar
  19. Eddy, J. A., Hoyt, D. V., White, O. R.: 1982a, Reconstructed Values of the Solar Constant from 1874 to the Present, Collection of extended abstracts presented at The Symposium on the Solar Constant and the Spectral Distribution of Solar Irradiance, IAMAP 3rd Scientific Assembly, 17–28 August, 1981, Hamburg, F.R.G.Google Scholar
  20. Eddy, J. A., Gilliand, R. L., and Hoyt, D. V.: 1982b Nature 300, 689.Google Scholar
  21. Foukal, P. and Vernazza, J.: 1979, Astrophys. J. 215, 952.Google Scholar
  22. Foukal, P., Livshits, M., Fowler, L., and Hickey, J.: 1982, ‘Nimbus-7 Observations of Solar Irradiance and a Thermal Model of Sunspot Influence on Solar Luminosity’, Science, in press.Google Scholar
  23. Fröhlich, C.: 1973, The Relation between the IPS (56) Now in Use, the Smithsonian 1913 Scale, the Angstrom (1905) Scale and the Absolute Scale, Proceedings of the Symposium on Solar Radiation Measurements and Instrumentation, Smithsonian Institution, Washington, D. C., p. 61.Google Scholar
  24. Fröhlich, C.: 1977, in O. R. White (ed.), Solar Output and Its Variation, Univ. of Colorado Press, Boulder, Colo., p. 73.Google Scholar
  25. Fröhlich, C.: 1981a, Pyrheliometer comparisons 1980- Results and Symposium, Working report No. 94, Physical Meteorological Observatory at Davos, Davos, Switzerland.Google Scholar
  26. Fröhlich, C. and Brusa, R. W.: 1981b, Solar Phys. 74, 209.Google Scholar
  27. Fröhlich, C.: 1982, Radiometry of Solar Irradiance Variations over Long Time Scales, 18th General Assembly of the International Astronomical Union, Patras, Greece, August, 1982.Google Scholar
  28. Fröhlich, C. and Wehrli, C.: 1982, Short Term variation of the Solar Spectrum, Extended abstracts, Symposium on the solar constant and the spectral distribution of solar irradiance, IAMAP 3rd Scientific Assembly, Hamburg, F.R.G., August, 1981.Google Scholar
  29. Fröhlich, C., Geist, J., Marchgraber, R. M., and Kendall, J. M., Sr.: 1973, Solar Energy 14, 157.Google Scholar
  30. Geist, J.: 1972, ‘Fundamental principles of Absolute Radiometry and the Philosophy of this NBS Program (1968–1971)’, Technical Note 591–1, National Bureau of Standards, Gaithersburgh, Md., U.S.A.Google Scholar
  31. Gough, D. O.: 1982, Nature 298, 334.Google Scholar
  32. Haley, F.: 1964, ‘A Rapid Response Blackbody Cavity Radiometer’, JPL New Technology Report 30–521, Jet Propulsion Laboratory, Pasadena, Calif., U.S.A.Google Scholar
  33. Hickey, J. R.: 1979, Private communication.Google Scholar
  34. Hickey, J. R.: 1981b, Private communication, September 8, 1981.Google Scholar
  35. Hickey, J. R.: 1983, Results from Nimbus 7 ERB Solar Observations, Workshop on Solar Variability on Active Region Timescales, Calif. Inst. of Technology, June 20–21, 1983.Google Scholar
  36. Hickey, J. R. and Griffin, F. J.: 1978, Solar Radiation Measurements from NIMBUS 6, American Meteorological Society's Third Conference on Radiation, Fort Collins, Colo., U.S.A.Google Scholar
  37. Hickey, J. R. and Karoli, A. R.: 1974, Appl. Opt. 13, 523.Google Scholar
  38. Hickey, J. R., Karoli, A. R., Hilleary, D. T., and Howell, H. B.: 1976, ‘The extraterrestrial Solar Irradiance Measurements from the Nimbus-6 Satellite’, Proc. Meeting of Solar Energy Soc. of Canada, Winnipeg, p. 329.Google Scholar
  39. Hickey, J. R., Griffin, F. J., and Howell, H. B.: 1977, ‘Two Years of Solar Measurements from the Nimbus-6 Satellite’, Proc. Intl. Solar Energy Soc. Solar World Conf., Orlando, Fla., Vol., p. 14.Google Scholar
  40. Hickey, J. R., Stowe, L. L., Jacobowitz, H., Pellegrino, P., Maschoff, R. H., House, F., and Vonder Haar, T. H.: 1980, Science 208, 281.Google Scholar
  41. Hickey, J. R., Alton, B. M., Griffin, F. J., Jacobowitz, H., Pellegrino, P., Smith, E. A., and Vonder Haar, T. H.: 1981, Solar Variability Indications from Nimbus 7 Satellite Data, in S. Sofia (ed.), NASA Conference Proceeding 2191, Variations of the Solar Constant, NASA Goddard Spaceflight Center, Greenbelt, MD.Google Scholar
  42. Hickey, J. R., Alton, B. M., Griffin, F. J., Jacobowitz, H., Pellegrino, P., Smith, E. A., Vonder Haar, T. H., and Maschoff, R. H.: 1982, J. Solar Energy 29, 125.Google Scholar
  43. Hirayama, T.: 1982, ‘On the global energy balance of solar facular regions’, Proc. of Hinitori Symposium, Tokyo, ISAS, p. 105.Google Scholar
  44. Hirayama, T. and Moriyama, F.: 1979, Solar Phys. 63, 251.Google Scholar
  45. Hoyt, D. V.: 1979, Rev. Geophys. Space Phys. 17, 427.Google Scholar
  46. Hoyt, D. and Eddy, J.: 1982, An Atlas of Variations in the Solar Constant Caused Sunspot Blocking and Facular Emissions from 1874 to 1981, National Center for Atmospheric Research Tech. Note -194+STR.Google Scholar
  47. Hudson, H. S., Silva, S., Woodard, M., and Willson, R. C.: 1982a, Solar Phys. 76, 211.Google Scholar
  48. Hudson, H. S. and Willson, R. C.: 1982b, ‘Sunspots and Solar Variability’, in L. Cram and J. Thomas (eds.), The Physics of Sunspots, Proc. Conference on Sunspots, Sacramento Peak Observatory, Sunspot, Ariz., U.S.A.Google Scholar
  49. Jacobowitz, H., Smith, W. L., Howell, H. B., Nagle, F. W.: 1979, J. Atm. Sci. 36, 501.CrossRefGoogle Scholar
  50. Kendall, J. M., Sr.: 1968, ‘The JPL Standard Total Radiation Absolute Radiometer’, Technical Report 32–1263, Jet Propulsion Laboratory, Pasadena, Calif., U.S.A.Google Scholar
  51. Kendall, J. M., Sr.: 1969, ‘Primary Absolute Cavity Radiometer, Technical Report 32–1396, Jet Propulsion Laboratory, Pasadena, Calif., U.S.A.Google Scholar
  52. Kendall, J. M., Sr.: 1973, ‘Factors Affecting Accuracy of Radiometer Measurements of Solar Irradiance and Results of a Measurement of the Solar Constant’, Proc. of Solar Radiation Symposium, Smithsonian Institution, Rockville, Md., p. 190.Google Scholar
  53. Kendall, J. M., Sr. and Berdahl, M.: 1970, J. Appl. Opt. 9, 1082.Google Scholar
  54. Kondratyev, K. Ya. and Nikolsky, G. A.: 1970, Quart. J. Roy. Meteorol. Soc. 96, 509.Google Scholar
  55. Kosters, J. J. and Murcray, D. G.: 1981, in S. Sofia (ed.), Change in the Solar Constant between 1968 and 1978, NASA Conference Publication 2191, NASA Goddard Spaceflight Center, Greenbelt, Md., November 1980.Google Scholar
  56. Murcray, D. G., Kosters, J. S., Kyle, T. G., and Gast, P. R.: 1969, Tellus XXI, 620.Google Scholar
  57. Newkirk, G., Jr.: 1983, Ann. Rev. Astron. Astrophys. 21, 382.Google Scholar
  58. Nikolsky, G. A.: 1978, Solar Constant Measurements from Balloons, US-USSR Bilateral Meeting on Solar Radiation Measurements, Main Geophysical Observatory, Leningrad, U.S.S.R.Google Scholar
  59. Oster, L. F., Schatten, K. H., and Sofia, S.: 1982, Astrophys. J. 256, 768.Google Scholar
  60. Plamondon, J. A.: 1969, TCFM Solar Observations on Mariner 69, JPL Space Programs Summary, Vol. 3, p. 162, Jet Propulsion Laboratory, Pasadena, Calif., U.S.A.Google Scholar
  61. Plamondon, J. A. and Kendall, J. M., Sr.: 1965, A Cavity-Type, Absolute Total Radiation Radiometer, Space Programs Summary 37–35, Vol. IV, Jet Propulsion Laboratory, Pasadena, Calif., U.S.A.Google Scholar
  62. Quinn, T. and Martin, J.: 1982, in Temperature, Its Measurement and Control in Science and Industry, American Institute of Physics, New York, Vol. 5, p. 169.Google Scholar
  63. Severny, A. B., Kotov, V. A., and Tsap, T. T.: 1976, Nature 259, 87.Google Scholar
  64. Severny, A. B., Kotov, V. A., and Tsap, T. T.: 1976, Solar Phys. 74, 65.Google Scholar
  65. Smith, W. L., Hilleary, D. T., Howell, H. B., Jacobowitz, H., Hickey, J. R., and Drummond, A. J.: 1977, J. Appl. Opt. 16, 306.Google Scholar
  66. Smith, E. A., Hickey, J. R., and Vonder Haar, T. H.: 1981, The Nature of Short Period Fluctuations in Solar Irradiance Observed by the Nimbus 7 Satellite, IAMAP 3rd scientific assembly, Hamburg, F.R.G.Google Scholar
  67. Sofia, S., Oster, L., and Schatten, K.: 1982, Solar Phys. 80, 87.Google Scholar
  68. Spruit, H.: 1977, Solar Phys. 55, 3.Google Scholar
  69. Sydnor, C. L.: 1970, ‘A Numerical Study of Cavity Radiometer Emissivities’, Technical Report 32–1463, Jet Propulsion Laboratory, Pasadena, Calif, U.S.A.Google Scholar
  70. Thekaekara, M. P., Kruger, R., and Duncan, C. H.: 1969, J. Appl. Opt. 8, 1713.Google Scholar
  71. Vonder Haar, T. H., Campbell, G. G., Smith, E. A., Arking, A., Coulson, K., Hickey, J., House, F., Ingersoll, A., Jacobowitz, H., Smith, L., and Stowe, L.: 1981, Adv. Space Res. (COSPAR) 1, 285.Google Scholar
  72. Willson, R. C.: 1967, ‘Radiometer Comparison Tests’, JPL Technical Memorandum 33–371, Jet Propulsion Laboratory, Pasadena, Calif, U.S.A.Google Scholar
  73. Willson, R. C.: 1969, ‘Experimental and Theoretical Comparison of the JPL Active Cavity Radiometric Scale and the International Pyrheliometric Scale, Technical Report 32–1365, Jet Propulsion Laboratory, Pasadena, Calif, U.S.A.Google Scholar
  74. Willson, R. C.: 1971a, J. Geoph. Res. 76, 4325.Google Scholar
  75. Willson, R. C.: 1971b, ‘Radiometer Comparison Tests’, Report 900–446, Jet Propulsion Laboratory, Pasadena, Calif, U.S.A.Google Scholar
  76. Willson, R. C.: 1972a, ‘Results of the 1972 Table Mountain Radiometer and Radiation Scale Comparisons’, Informal report, Jet Propulsion Laboratory, Pasadena, Calif, U.S.A.Google Scholar
  77. Willson, R. C.: 1972b, Nature 239, 208.Google Scholar
  78. Willson, R. C.: 1973a, J. Appl. Opt. 12, 810.Google Scholar
  79. Willson, R. C.: 1973b, J. Solar Energy 14, 203.Google Scholar
  80. Willson, R. C.: 1975, ‘Instrumentation for Measurements of Solar Irradiance and Atmospheric Optical Properties’, Proc. Soc. Photo-Optical Instrumentation Engineers, San Diego, Calif, U.S.A., p. 31.Google Scholar
  81. Willson, R. C.: 1979, J. Appl. Opt. 18, 179.Google Scholar
  82. Willson, R. C.: 1980a, J. Appl. Opt. 19, 3256.Google Scholar
  83. Willson, R. C.: 1980b, Solar Irradiance Observations from the SMM/ACRIM Experiment, American Geophysical Union, Toronto, Canada, May, 1980.Google Scholar
  84. Willson, R. C.: 1980c, ‘Solar Irradiance Variations’, XIV ESLAB Symposium on Physics of Solar Variations, Scheveningen, The Netherlands, September, 1980.Google Scholar
  85. Willson, R. C.: 1980d, ‘Satellite Observations of Solar Irradiance Variability’, 5th International Pyrheliometer Comparisons Symposium, World Radiation Center, Physical Meteorological Observatory, Davos, Switzerland, (published in Working Report No. 94, Swiss Meteorological Institute, Zürich, 1981).Google Scholar
  86. Willson, R. C.: 1981a, Solar Phys. 74, 218.Google Scholar
  87. Willson, R. C.: 1981b, ‘Observation of Solar Irradiance Variations in Balloon, Rocket, and Satellite Experiments’, Proc. of IAMAP 3rd Scientific Assembly, Hamburg, F.R.G., August, 1981.Google Scholar
  88. Willson, R. C.: 1982, J. Geophys. Res. 86, 4319.Google Scholar
  89. Willson, R. C.: 1983, ‘Solar Irradiance Variability from 1980–1983’, in press.Google Scholar
  90. Willson, R. C. and Hickey, J. R., 1977, ‘1976 Rocket Measurements of the Solar Constant and Their Implications for Variation in the Solar Output in cycle 20’, in O. R. White (ed.), The Solar Output and Its Variation, Colorado Associated University Press, Boulder, Colo., U.S.A.Google Scholar
  91. Willson, R. C. and Hudson, H. S.: 1981, Astrophys. J. Letters 24, 185.Google Scholar
  92. Willson, R. C., Duncan, C. H. and Geist, J.: 1980, Science 207, 177.Google Scholar
  93. Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S., and Chapman, G. A.: 1981, Science 211, 700.Google Scholar
  94. Woodard, M. and Hudson, H.: 1983a, Solar Phys. 82, 67.Google Scholar
  95. Woodard, M. and Hudson, H.: 1983b, Nature 305, 589.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • Richard C. Willson
    • 1
  1. 1.Jet Propulsion Laboratory, Calif. Inst. of TechnologyPasadenaUSA

Personalised recommendations