Molecular Engineering

, Volume 1, Issue 4, pp 295–303 | Cite as

Electronic structure and molecular design of simplified polyimide systems

  • Keizo Nakajima
  • Kazuyoshi Tanaka
  • Tokio Yamabe


The electronic structures of newly designed polyimide systems (ethenetetracarboxylic 1,2:1′,2′-dianhydride-diaminoethyne (PI-A) and ethenetetracarboxylic 1,1′:2,2′-dianhydride-diaminoethyne(PI-B)) are studied in detail with respect to their optimized geometries on the basis of the one-dimensional tight-binding self-consistent field crystal-orbital method. The computational results have revealed that PI-B shows intriguing properties such as a very small band gap and a wide bandwidth near the frontier level, compared with PI-A and other polyimides. Since PI-B would be a promising candidate for a new electric conducting material, a reaction diagram for this polymer is also proposed.

Key words

Polyimide systems electric conduction electronic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Gupta and W. D. Weber: Recent Advances in Polyimide Science and Technology, Society of Plastic Engineers, New York (1987).Google Scholar
  2. 2.
    L. J. Krause, P. S. Lugg and T. A. Speckhard: J. Electrochem. Soc. 136, 1379 (1989).Google Scholar
  3. 3.
    K. Iida, T. Nohara, S. Nakamura and G. Wawa: Jpn. J. Appl. Phys. 28, 1390 (1989).Google Scholar
  4. 4.
    A. Takimoto, H. Wakemoto, E. Tanaka, M. Watanabe and H. Ogawa: J. Photopolym. Sci. and Technol. 3, 73 (1990).Google Scholar
  5. 5.
    M. Padmanaban, M. Toriumi, M. Kakimoto and Y. Imai: J. Polym. Sci. Polym. Chem. 28, 3261 (1990).Google Scholar
  6. 6.
    B. D. Silverman, P. N. Sanda and P. S. Ho: J. Polym. Sci. Polym. Chem. 23, 2857 (1985).Google Scholar
  7. 7.
    J. L. Brédas and T. C. Clarke. J. Chem. Phys. 86, 253 (1987).Google Scholar
  8. 8.
    J. P. LaFemina. G. Arjavalingam and G. Hougham. J. Chem. Phys. 90, 5154 (1989).Google Scholar
  9. 9.
    J. P. LaFemina: Chem. Phys. Lett. 159, 307 (1989).Google Scholar
  10. 10.
    H. M. MeyerIII, T. J. Wagener, J. H. Weaver, M. W. Feyereisen and J. Almlöf: Chem. Phys. Lett. 164, 527 (189).Google Scholar
  11. 11.
    S. A. Kafafi: Chem. Phys. Lett. 169, 561 (1990).Google Scholar
  12. 12.
    S. A. Kafafi, J. P. LaFemina and J. L. Nauss: J. Am. Chem. Soc. 112, 8742 (1990).Google Scholar
  13. 13.
    P. O. Hahn, G. W. Rubloff and P. S. Ho: J. Vacuum Sci. Technol. A2, 756 (1984).Google Scholar
  14. 14.
    N. Takahashi, D. Y. Yoon and W. Parrish: Macromolecules 17, 2583 (1984).Google Scholar
  15. 15.
    K. Tanaka, T. Shichiri, M. Kobashi and T. Yamabe: Synth. Met. 24, 167 (1988).Google Scholar
  16. 16.
    G. A. Segal: Semiempirical Methods of Electronic Structure Calculation, Plenum Press, New York (1977).Google Scholar
  17. 17.
    M. Kertész: Adv. Quantum Chem. 15, 161 (1982).Google Scholar
  18. 18.
    K. Tanaka, S. Yamashita, H. Yamabe and T. Yamabe: Synth. Met. 17, 143 (1987).Google Scholar
  19. 19.
    J. L. Brédas. Synth. Met. 17, 115 (1987).Google Scholar
  20. 20.
    J. Sauer, B. Schröder and R. Wiemer: Chem. Ber. 100, 306 (1967).Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Keizo Nakajima
    • 1
    • 2
  • Kazuyoshi Tanaka
    • 1
    • 2
  • Tokio Yamabe
    • 1
    • 2
  1. 1.Department of Hydrocarbon Chemistry and Division of Molecular Engineering, Faculty of EngineeringKyoto UniversityKyotoJapan
  2. 2.Institute for Fundamental ChemistryKyotoJapan

Personalised recommendations